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Abstract 
This report describes a three-month pilot study to assess the feasibility and value of 
deploying CHERI memory protection and CHERI software compartmentalization in an open-
source desktop software stack. The context for this work is Arm’s forthcoming Morello 
processor, SoC, and board, which is the first industrial grade implementation of CHERI, and 
has the hardware facilities and performance to be suitable for desktop use. 

We experimentally compile a significant open-source stack using memory-safe CHERI 
C/C++, validating the work in emulation, and perform a series of whiteboarding exercises to 
explore potential applications of software compartmentalization. We evaluate the results with 
respect to source-code disruption and a retrospective study of the vulnerability of selected 
components in that stack. We measure a 0.026% Lines-of-Code (LoC) change rate in 
approximately 6 million lines of C and C++ code to introduce CHERI memory safety. In our 
review of past vulnerabilities, we see likely mitigation rates of 91% for X11, 82% for Qt, 43% 
for KDE, and 100% for other supporting libraries (typically image processing). 

Despite a number of limitations to this study, for example as relates to limited dynamic 
testing, we conclude that deploying CHERI protection in a contemporary, open-source 
desktop stack is feasible and offers significant value in terms of practical security. We 
recommend a number of avenues for future research and development.  
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1. Introduction 
In this three-month pilot research study, part of UKRI’s Digital Security by Design (DSbD) 
research programme, we investigated and assessed the applicability of CHERI [1, 2] 
memory protection and compartmentalization to an open-source desktop software stack. We 
adapted portions of X11, Qt, and KDE for memory-safe CHERI C/C++ compilation [3], 
reviewed a larger body of open-source code and its vulnerability history, and sketched a 
number of trial compartmentalizations of key libraries and applications. We conducted this 
exploration using the open-source CHERI-RISC-V and DSbD prototype Arm Morello 
architectures implemented on the QEMU ISA-level emulator. The forthcoming Arm Morello 
[4, 5] board will have both the hardware facilities and performance to enable security-critical 
desktop use. To date, desktop software has not been a focus of CHERI-related research, 
however. We used CheriBSD’s CheriABI [6] pure-capability (memory-safe) process 
environment, with the further assumption of heap temporal memory safety via a technique 
such as Cornucopia [7], but the results of our work should have broad applicability as other 
operating systems (e.g., Linux) gain improved CHERI support. We have sought a high level 
of reproducibility, and include instructions in this report to build and run the resulting 
memory-safe software stack. 

We demonstrated clear applicability of CHERI protection in hardening this open-source 
desktop environment, and we describe a potential implementation strategy for a larger-scale 
future project. We also identified minor improvements to the compiler toolchain making 
software adaptation easier, and gaps in understanding around software 
compartmentalization that may motivate future research. Our CHERI-specific changes 
required modifying 0.026% of 6 million C and C++ Lines-of-Code (LoC). In our review of past 
vulnerabilities in selected portions of the software stack, we saw likely mitigation rates of 
91% for X11, 82% for Qt, 43% for KDE, and 100% for other supporting libraries (typically 
image processing). We describe a potential narrative for combined deployment of memory 
protection and compartmentalization across a broader desktop software corpus, especially 
with respect to larger desktop applications that are frequently built using large library stacks. 

Overall, our conclusion is that CHERI and Morello have the potential to support a 
significantly more secure desktop ecosystem, with relatively low developer burden in 
adapting most existing software. This is especially true for CHERI memory protection, which 
appears to address a large proportion of past vulnerabilities, while requiring relatively little 
code change. Compartmentalization also contributes substantially to resolving vulnerabilities 
key to vendor threat models, especially with respect to potential denial of service and higher-
level logical bugs in applications. However, there remain important research challenges, 
including improving systems software (and especially operating systems) to provide easy-to-
use and well-documented facilities for compartmentalization, and in terms of tooling support 
for compartmentalization to reduce the potential developer burden in performing that work. It 
is also clear that this work, given additional time, could have been taken substantially further 
to provide greater certainty of results; for example, there is the opportunity to take a more 
concrete adversarial approach in further analyzing vulnerabilities and their potential 
mitigations. We attempt to document limitations of the study in some detail. 
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2. Team 
Capabilities Limited is a UK-based consultancy providing technical expertise and software 
development services relating to open-source software and security: 

Dr Robert Watson is a Director of Capabilities Limited, and also Reader in Systems, 
Security, and Architecture and the Principal Investigator (PI) leading development of CHERI 
at the University of Cambridge and SRI International. He is a strong advocate of, and 
contributor to, open-source software, including being a FreeBSD developer, and board 
member (and past President) of the FreeBSD Foundation. 

Ben Laurie is a Director of Capabilities Limited, and also technical lead in security in Google 
Research. He has played a significant role in creating a number of key open-source projects 
including the Apache Software Foundation and OpenSSL, and has been involved in the 
creation of the CHERI ISA. 

Dr Alex Richardson is a technical staff member at Capabilities Limited, and also a Senior 
Research Software Engineer (SRSE) at the University of Cambridge. His PhD dissertation 
developed key ideas and prototypes for the CHERI C/C++ programming language and 
linkage models. He is also a contributor to the FreeBSD, LLVM, and KDE projects. 

The Capabilities Limited project team collaborated over a three-month period in mid-2021, at 
approximately one full-time equivalent (FTE) level of effort collectively (totaling three staff 
months), to investigate and analyse an open-source graphics and application stack to 
assess the viability of applying CHERI protections to it.  

3. Background 
Developed by SRI International and the University of Cambridge, CHERI (Capability 
Hardware Enhanced RISC Instructions) is a computer processor architecture protection 
technology supporting the implementation of fine-grained referential, spatial, and temporal 
memory protection, as well as enabling scalable software compartmentalization [1]. The 
CHERI protection model has been applied to multiple Instruction-Set Architectures (ISAs) 
including 64-bit MIPS, 32- and 64-bit RISC-V, and 64-bit ARMv8-A, known respectively as 
CHERI-MIPS, CHERI-RISC-V, and Arm Morello. 

The Arm Morello board, processor, and System-on-Chip (SoC), a Digital Security by 
Design technology, ships in early 2022. The Morello SoC is an experimental high-
performance, multi-core, multi-GHz design that includes a GPU, and will be the first platform 
suitable to use as a CHERI-extended desktop system. Although the Morello board was not 
yet available at the time this work was done, the architecture specification, emulator, and 
software stack are usable and they offer reasonable confidence that results from our work 
will apply to production boards. Lessons learned from the Morello project are expected to 
influence subsequent editions of the ARM architecture. 
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CHERI C and C++ 
The CHERI C and CHERI C++ programming languages utilize CHERI’s architectural 
capabilities to implement and protect language-level pointers and the data to which they 
refer, as well as sub-language data structures such as the stack, GOTs (Global Offset 
Tables, used to access global variables), and other portions of the language runtime [3]. This 
is referred to as pure-capability code, as all pointers, explicit and implied, are represented 
as capabilities rather than integers. CHERI C and C++ are implemented by the CHERI-
extended CHERI Clang/LLVM compiler suite [8]. This provides strong referential safety 
(protecting pointers), spatial safety, and, with the addition of Cornucopia [7] or related 
techniques, heap temporal safety, which we take for granted in our retrospective vulnerability 
analysis. Stack temporal safety is not provided by current CHERI hardware and software 
prototypes, and is not assumed in this work. 

The degree to which off-the-shelf C and C++ software can simply be recompiled to achieve 
higher levels of memory safety is an ongoing topic of research, as CHERI C and C++ have 
evolved substantially since earlier studies were completed, and compatibility is sensitive to 
idiomatic programming styles. For example, code that makes correct use of uintptr_t or 
primarily relies on C++ programming idioms will tend to adapt to CHERI without substantial 
(or any) modification. On the other hand, language runtimes using pointer compression 
techniques, or older source bases using the long data type to hold pointers, may require 
more invasive modifications. 

CheriBSD and CheriABI 
CheriBSD [9], a CHERI-extended version of the open-source FreeBSD operating system, 
implements a pure-capability CheriABI process environment able to execute CHERI C/C++ 
code [6]. Under CheriABI, the kernel, run-time linker, and system libraries cooperate to 
support the compiler in implementing strong and fine-grained memory protection. To date, 
the primary software adaptation focus has been low-level systems software such as the 
FreeBSD userspace, OpenSSH daemon, PostgreSQL database, nginx web server, and so 
on. CheriBSD contains experimental support for CHERI temporal memory safety via 
Cornucopia, and also for software compartmentalization, although that remains an active 
area of research [10]. It is also possible to compile the CheriBSD kernel itself as CHERI C, 
providing strong spatial memory safety for the kernel. 

Adapting software to CHERI C and C++ 
In general, adaptation of contemporary C and C++ source code to CHERI C and C++ is 
straightforward, requiring occasional minor improvements in C type use (e.g., to deconflate 
integer and pointer values) detected by the compiler, or sometimes dynamic issues such as 
insufficiently strong alignment in custom memory allocators. Adaptation will often turn up 
minor memory-safety issues, such as buffer overflows missed by other debugging tools for 
various reasons. However, some types of software may require substantial work to adapt. 
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Challenge: Idiomatic C code confusing pointers and integers 
Low-level C code often embeds assumptions about the interchangeability of pointers and 
integers. Such use often dates from the late 1990s or earlier, prior to standardization of the 
intptr_t type -- an integer type able to hold a pointer value (which is implemented as a 
capability in CHERI C/C++). This is a generally well understood area in CHERI research, 
and examples include some low-level systems software as well as some language runtimes. 
Improvements to use the more appropriate type can be some work to develop and test, but 
can often be readily upstreamed to open-source projects even without the specific motivation 
of CHERI. We selected a broad corpus of C and C++ code to evaluate against, including 
low-level (and generally older) C-language libraries such as giflib and libpng, as well as 
higher-level (and generally more recent) C++ library and application code such as Qt and 
KDE. 

Challenge: Language runtimes 
Language runtimes can present a more serious adaptation to CHERI C/C++ if they: 

● Are highly aware of, and specifically target, machine code on current architectures, 
such as Just-In-Time (JIT) compilers, which will require a new architecture target to 
be developed; 

● Employ pointer compression techniques to minimize existing pointer-size overheads 
(common with highly optimized runtimes), which interact poorly with CHERI pointers 
and also may limit the use of CHERI pointers due to their size; or 

● Are fundamentally structured around enabling arbitrary code execution and flexible 
use of C types and memory, and hence may require some adaptation to run with 
CHERI, and further work to harden it using CHERI features. 

Due to the complexity of extending language runtimes for CHERI support, we have limited 
our work in this project to a single instance: the QML language runtime used by Qt for user 
interface description and component interconnection. There has been other work on 
adapting language runtimes to CHERI, including Apple’s WebKit; however, the size and 
scope of this project did not permit exploring CHERI adaptation to, for example, the 
QtWebEngine JavaScript interpreter. We consider the adaptation of additional language 
runtimes to CHERI an essential area for future research, given their security criticality and 
frequent vulnerabilities. 

4. Approach 
Our objective was to assess the viability of extending an existing open-source desktop 
software environment to make extensive use of CHERI C/C++ memory protection and 
CHERI software compartmentalization for the purposes of vulnerability mitigation. We 
explored the potential impact of CHERI via two approaches: 

1. We pursued selected prototyping case studies in CHERI C/C++ adaptation of 
software components at each layer in the stack, including the X11 window server and 
Qt/KDE desktop environment. 
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2. We manually inspected selected software for potential compartmentalization 
opportunities, exploring (on a whiteboard) the impact on software structure and 
security. 

In both cases, the aim was to gather evidence required to plan a larger project to more 
completely implement a CHERI-enabled desktop environment suitable for the Morello board. 
We therefore considered several evaluation criteria to help us understand the potential costs 
of adaptation, and also the potential benefits: 

1. Ease of software adaptation -- identifying less easily adapted idiomatic C use (e.g., 
in older software or in language runtimes), architectural awareness (e.g., in JITs or 
other highly optimized software packages requiring non-trivial change), and the 
extent of natural encapsulation opportunities for compartmentalization. A key concern 
was the extent to which changes to C and C++ were CHERI-specific or not -- and if 
not, whether they could be upstreamed to the underlying open-source project as 
acceptable improvements in source-code quality. 

2. Security impact -- as judged with respect to potential mitigation of past software 
vulnerabilities for the target software stacks, relating to both memory safety and 
compartmentalization. This requires characterizing software threat models, which are 
often not documented explicitly; we instead look to past vulnerability announcements 
to understand the de facto threat model for each piece of software. Here, 
whiteboarding exercises (based primarily on vendor security analyses) are used, due 
to the limit on available time. 

3. Potential for performance overhead -- QEMU and the Arm Morello FVP are not 
suitable for performance studies. However, memory protection can have measurable 
overhead, especially in pointer-dense workloads (e.g., language runtimes). Further, 
potential placement of compartmentalization boundaries is a performance-sensitive 
activity. We must therefore estimate the acceptability of introducing 
compartmentalization boundaries. 

One technical challenge lay in scaling our work to a very large open-source software corpus. 
Anywhere manual inspection or prototyping is required, we were necessarily resource 
constrained. Modest enhancements to compiler warnings and dynamic checking, described 
later in this report, assisted substantially in our work, and have now been upstreamed to the 
CHERI LLVM project, or submitted for review for future inclusion. 

Another technical challenge lies in the difference between the software techniques used in 
low-level systems software, where CHERI experience is strong, versus in higher-level 
desktop applications, where there is limited experience. Extensive use of C++, embedding of 
language runtimes, and IPC-linked components limit the scope of our experiments given 
constrained time. It is likely that there will be the opportunities for significant wins from 
CHERI deployment in that software (e.g., CHERI IPC performance improvements), and also 
new challenges (e.g., understanding how CHERI can protect language runtimes for which a 
key design goal is controlled arbitrary code execution), which we are not able to fully explore 
in this project. 

Where we made changes to open-source software stacks that were not CHERI-specific -- 
e.g., making better use of C integer and pointer types, or to correct memory-safety violations 
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-- we attempted to upstream those changes. This offers us some measure of the 
acceptability of CHERI-motivated (but not CHERI-specific) changes in these open-source 
communities. We did not attempt to upstream any CHERI-specific changes (e.g., setting 
capability bounds in custom memory allocators, etc.), as CHERI remains a research 
technology.  Prior CHERI adaptation efforts, especially those involving low-level C/C++ 
runtime software, have sometimes benefited from a middle category of changes -- e.g., 
restructurings to ease adoption of CHERI while neither being CHERI-specific nor correcting 
adherence to language specifications. However, the comparatively high-level software 
components studied here did not generally require changes along these lines. Where we 
have successfully upstreamed patches, we have indicated them in the tables and/or 
footnotes below; this was the vast majority of patches other than those avoiding 
dependencies not yet available on CheriBSD. 

5. Prototype CHERI-enabled desktop stack 
The open-source community has developed a number of complete GUI software stacks 
consisting of window servers, class libraries, and application stacks. For the purposes of this 
research, we have selected a specific vertical stack including the X.org window system and 
Qt/KDE-based desktop environment, along with dependent libraries. We selected this stack 
for multiple reasons, including its accessibility as a stack, spread of functionality, and use of 
C and C++ across various layers in the stack. In this section, we elaborate our choice of 
baseline stack, as well as the supporting build, emulation, and OS environments we used in 
our experimentation. Appendix A contains a complete list of adapted software packages. 

Build and emulation environments 
All software and demonstrations were built using the cheribuild build framework,1 and 
compiled with CHERI Clang/LLVM for CHERI-RISC-V2 and Morello.3 We developed our 
software adaptations on CHERI-RISC-V, and also tested them with Arm Morello. For 
emulation of both architectures, we used the QEMU-CHERI emulator developed by the 
University of Cambridge [11]. We used versions of these tools from their respective 
development trunks as of July 2021. 

The host environment for our experiments was macOS, used with the XQuartz X11 display 
server 2.8.1 (for X11 SSH-forwarding of individual applications) and TigerVNC VNC client 
1.11.0 (for full-screen desktop display). However, none of this project depends on a macOS 
host environment, and we also tested cross-compilation from Linux systems. 

Software module(s)  Description 

CHERI and Morello 
Clang/LLVM toolchain 

 Existing macOS-/Linux-/FreeBSD-hosted cross-
compiler for CHERI C/C++ 

cheribuild  Existing tool to simplify and automate building and 

 
1 https://github.com/CTSRD-CHERI/cheribuild 
2 https://github.com/CTSRD-CHERI/llvm-project 
3 https://git.morello-project.org/morello/llvm-project 
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testing (cross-compiled) projects. We have 
extended it as part of this project to support 
building and testing of the CHERI desktop stack. 

QEMU-Morello  Existing macOS-hosted emulator 

QEMU-CHERI-RISC-V  Existing macOS-hosted emulator 

Baseline operating-system stack 
All work was targeted at the CheriBSD operating system (OS) developed by SRI 
International and the University of Cambridge. We used the CheriABI pure-capability 
process environment on CheriBSD [6], and also utilized a pure-capability CheriBSD kernel 
configuration, with the aim of achieving full-stack C/C++ memory safety. CheriBSD includes 
a full suite of low-level system libraries and utilities compiled as pure-capability CHERI 
C/C++ code for the CheriABI process environment; these did not require extension for our 
work. The CheriBSD development trunk as of July 2021 was used for this project. 

Software module(s)  Description 

CheriBSD libraries  Existing pure-capability libraries (C/C++) 

CheriBSD kernel  Existing pure-capability OS kernel (C) 

 

CheriBSD currently offers the most mature execution environment for pure-capability CHERI 
C/C++ code, having a cross-development toolkit, unified build system, tightly integrated 
CHERI support including the CheriABI process environment, and also a large suite of CHERI 
adapted libraries. However, it is our expectation that the vast majority (if not all) of the 
adaptation we performed on higher-level application components, from the display server 
through to KDE itself, is applicable to a future mature CHERI adaptation of the Linux 
operating system (e.g., with CheriABI support). 

Display server 
Display servers are programs that allow applications to render output to the user display, 
and accept input via devices such as keyboards and mice. To test desktop applications, we 
made use of the XVNC display server, which creates a virtual X Windows (X11) display for 
the virtual machine hosted within QEMU. The output of the display is forwarded over a 
socket to a VNC client running on the host system (in this case the macOS version of 
TigerVNC 1.11.0). We adapted the XVNC display server for CHERI C/C++ compilation; we 
used the XVNC development trunk as of July 2021 and compiled it against the X11 XServer 
1.20 stable branch as of July 2021. 

Software module(s)  Description 

XVNC (TigerVNC server)  Newly adapted pure-capability remote display 
server (mostly C, some C++) 
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XServer (common code 
used by XVNC) 

 Newly adapted pure-capability remote display 
server (C) 

TigerVNC client  Unmodified VNC client to display the QEMU output 
under macOS 

Display and UI-facing software libraries 
Contemporary desktop applications rely on an extensive library stack to communicate with 
the display server, render output, accept input, compute, interact with other applications via 
shared services such as copy-and-paste, and use I/O services such as networking and 
storage. We adapted the K Desktop Environment (KDE) and its library dependencies, 
including Qt and X11, for CHERI C/C++ compilation, as well as investigating them for 
compartmentalization opportunities. For the Qt libraries, we compiled the 5.15 LTS stable 
branch and for all other libraries and programs we used the latest git snapshot as of 30th 
July 2021. 

Software module(s)  Description 

KDE frameworks libraries  Newly adapted pure-capability libraries (C++) 

Qt class libraries  Newly adapted pure-capability libraries (C++) 

X11 libraries  Newly adapted pure-capability libraries (C) 

Other supporting libraries 
(e.g. libjpeg-turbo, poppler, 
fontconfig, freetype2). 

 Newly adapted pure-capability libraries (C/C++) 

Desktop 
A typical open-source UNIX desktop environment consists of a window manager/compositor 
providing features such as window decorations, as well as a desktop shell that provides 
interactive elements such as the start menu, desktop background, and system tray. For our 
demonstrator system we initially adapted the minimal IceWM desktop due to the low number 
of dependencies. We then expanded our scope to include the full KDE software stack 
including the feature-rich Plasma desktop shell. As with the KDE frameworks, we use the 
latest git snapshots from July 2021. 

Software module(s)  Description 

KWin window manager  Newly adapted pure-capability application (C++) 

IceWM minimal desktop  Newly adapted pure-capability application (C++) 

Plasma desktop shell  Newly adapted pure-capability application (C++) 



 

15 

Applications 
We adapted a number of Qt and KDE applications for CHERI C/C++ compilation, as well as 
investigating them for compartmentalization opportunities. As the scope of this project does 
not allow for porting and testing the entire KDE application stack (over 200 applications) [12], 
we selected a few applications that should be representative of commonly used desktop 
software (e.g., a file manager and viewers/editors for various file formats). Many of these 
applications are also interesting from a security point of view, because they often interact 
with content received from untrustworthy (and potentially malicious) sources. We used the 
latest git snapshots from July 2021. 

Software module(s)  Description 

Dolphin  Newly adapted pure-capability file manager (C++) 

Gwenview  Newly adapted pure-capability image viewer and 
minimal editor (C++) 

Plasma system settings  Newly adapted pure-capability application (C++) 

Okular  Newly adapted pure-capability document viewer 
with support for many file formats such as PDF or 
EPub (C++) 

Excluded software packages 
Due to limited time and scope for this effort, we did not include a number of key software 
modules in this work, which would be required to implement a fully elaborated desktop 
environment. In the X11/Qt/KDE ecosystem, we excluded: 

Software module(s)  Description 

D-Bus  IPC middleware used in KDE and Gnome (C) (omitted 
due to project timeline) 

Kate  Advanced text editor with syntax highlighting and code 
completion for many programming languages (C++) 
(omitted due to project timeline) 

KMail and KOrganizer  Email client and Calendar applications (C++) 
(omitted due to project timeline) 

Calligra and Krita  Office suite and advanced painting program (C++) 
(omitted due to project timeline; LibreOffice is the more 
commonly-used open-source office suite, but was 
beyond the scope of this project.) 

 

Also, we were not able to include a number of other display and desktop-focused open-
source software packages of interest beyond the X11/Qt/KDE desktop ecosystem: 
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Software module(s)  Description 

OpenGL  Graphics rendering and acceleration framework 
(required for GPU acceleration) (C and C++) 

X11 Panfrost userspace 
device driver 

 Userspace device driver required for Arm Mali GPUs (C) 

KMS, DRM, and Panfrost 
kernel device drivers 

 Kernel device drivers required for Arm Mali GPUs (C) 

Wayland4  Contemporary userspace display server intended to 
replace X11 (C) 

Gnome Desktop 
Environment 

 Alternative open-source desktop stack to the KDE 
ecosystem (C,C++, and Vala) 

LibreOffice  Open-source office package including word processor, 
spreadsheet, and other tools (C, C++, Java, and other 
languages, and also comes with a number of challenges, 
including using Java and its own Foreign Function 
Interface (FFI) mechanism that might require 
adaptation.) 

VLC media player  Open-source media player with support for many 
different audio and video formats (C, C++) 

Gimp  Open-source graphics package (C) 

Thunderbird  Open-source mail reader (C, C++) 

Chromium, Firefox  Open-source web browsers (C, C++). The CHERI 
project has previously created an experimental CHERI 
(and Morello) WebKit adaptation, although there was not 
yet a writeup analyzing the results of that work at the 
time this report was published.5 

 

It is reasonable to assume that several of these uninvestigated software packages would 
present substantial engineering challenges due to their inclusion of language runtimes, 
including Just-in-Time (JIT) compilers. 

Finally, we were unable to analyse or experimentally adapt proprietary desktop software 
packages available for FreeBSD and/or Linux, including the following indicative examples: 

Software module(s)  Description 

Zoom  Desktop video conferencing software 

Skype  Desktop video conferencing server 

 
4 As an initial scoping exercise, we ported the base Wayland libraries to CHERI C without any 
problems; however, all Wayland display servers required significant dependencies that we could not 
have realistically ported within the project timeline. 
5 https://github.com/CTSRD-CHERI/webkit/ 
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Morello-enabled operating systems such as CheriBSD and Morello Linux are able to run 
unmodified Arm64 applications distributed as binaries -- but are not able to offer them strong 
internal memory safety, since that requires, at minimum, recompilation. 

6. CHERI C/C++ compilation 
For all projects we report the total number of source lines6 (counted using cloc version 1.90 
[13]), as well as the number of changes made in order to support CHERI C/C++ compilation. 
We also show the changes that we made that were unrelated to CHERI. However, most of 
those are related to cross-compilation and will therefore no longer be required once Morello 
boards are available. The scripts we used to perform the analysis of change percentages 
have been made available as open-source and are available at [14]. 

Initial GUI prototype: Qt applications via X11 SSH forwarding 
For the initial exploration of graphical applications on top of a CHERI-based operating 
system we decided to run X11 QtBase example applications via SSH X11 forwarding. We 
chose this as a first step since X11 forwarding over SSH avoids dependencies on graphics 
drivers and we had a pre-existing CHERI port of Qt 5.10 dating back to 2017, so the only 
missing pieces for this initial proof-of-concept were the X11 client libraries. 

Porting complexity 
Most of the X11 libraries worked out-of-the box when compiled for CHERI C, but we did 
have to make two changes to tell the libX11 and libXt libraries that pure-capability CHERI-
RISC-V has a 64-bit long (due to a hardcoded list of architectures),7 one change to allow for 
cross-compilation from macOS8 and finally two kinds of changes that affect only CHERI C. 

The first type of change to support CHERI involved replacing various uses of long with 
uintptr_t in libXt code that predates the C99 standard9. Most of these changes were 
straightforward, as the compiler flagged them with warnings. However, two of them only 
showed up at run time. The first was caused by the assumption that two structures have 
identical layouts if one of them uses pointer members and the other one unsigned long. 
This assumption does not hold for CHERI; as part of the upstreaming effort we also added 
compile-time assertions to catch this problem. The second issue was a SIGBUS caused by 
an under-aligned structure access, due to a memory buffer being aligned to only 64 bits 
instead of the size of a pointer (128 bits for Morello).  

 
6 We report "source" lines of code, i.e., lines of code ignoring comments and whitespace since 
counting whitespace and comments would represent the percentage of change as being 
unrealistically small. 
7 libXt: Define LONG64 if SIZEOF_LONG indicates 64-bit long and 
  xorgproto: Define LONG64 if SIZEOF_LONG indicates 64-bit long 
8 libX11: Fix macOS cross-compilation 
9 libXt: Support architectures where pointers are bigger than long 
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Additionally, we discovered incorrect uses of realloc() that happen to work on most 
architectures, but create invalid or out-of-bounds pointers in CHERI C. libX11 includes at 
least two dynamically allocated data structures that contain pointers to the same memory 
allocation. These data structures can be resized using the realloc() function, which can 
result in the underlying memory being copied to another region. The existing libX11 attempts 
to correct the pointer values after reallocation by adding the offset between the old and new 
allocation to each of the contained pointers. However, this is undefined behaviour according 
to the C standard and with CHERI C results in a pointer that has the address of the new 
allocation but the bounds of the old one10, and therefore will trigger a CHERI exception when 
dereferenced. The solution for this is to update pointers by deriving from the new allocation, 
instead of adding an offset to the old pointer. We have submitted this change upstream and 
it has since been accepted upstream.11 

 

Qt calculator and Tetris demo running via X11 SSH forwarding on CheriBSD 

Summary 
Overall, it took about 8 hours to port the X11 client libraries to CHERI C/C++ and run 
example applications via X11 forwarding. Most of the required changes were straightforward 
(and partially suggested by the compiler), and therefore should not require much prior 
CHERI experience. However, the incompatibilities caused by realloc() are more subtle 
and would have taken developers without prior CHERI experience significantly longer to 
debug. A more detailed description of the debugging process to resolve these issues can be 
found at [16]. In later stages of this project we discovered that misuse of realloc() and 
similar problems that cause pointers to go out-of-bounds are relatively common in legacy C 

 
10 In general, these pointers will be so far out-of-bounds that they are no longer representable with the 
CHERI capability encoding scheme [15], so they will become untagged after this pointer arithmetic. 
11 libX11: Fix undefined behaviour after realloc() 
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codebases, so we added CHERI Clang/LLVM compiler instrumentation to diagnose them 
earlier (when creating an unrepresentable capability rather than on dereference). See the 
next section for more details. 

Component Lines of code Language Required adaptations 

xorgproto 29 K C 5 LoC changed (0.017%) to make the library 
aware that long is 64 bits. 

libX11 114K C 4 LoC changed (0.004%) to fix undefined 
behaviour after realloc and a macOS cross-
compilation fix. 

LibXt 34 K C 47 LoC changed (0.138%) to make the library 
aware that long is 64 bits long and various 
changes  replacing long with intptr_t. 

Additional X11 
libraries12 

43K + 
102K generated 

C Completely unmodified existing C code, the 
majority of it being generated code in libxcb 
(created from XML protocol descriptions). 

QtBase (version 
5.10) 

1,504 K + 
505K tests + 

74K examples 

C++ 530 LoC changed in the library (0.04%) and 
42 LoC changed in the test (0.008%).  
No changes to the examples. 
See [17] for the nature of changes. 

 

Full-screen GUI using remote-desktop solutions (XVNC) 
After successfully running graphical applications using X11 SSH forwarding, we moved on to 
running a full desktop environment on top of an XServer. As we do not yet have a usable 
graphics driver, we chose XVNC, an XServer implementation that sends the framebuffer 
contents over the network to a VNC viewer on the host. Many open-source minimal desktop 
solutions exist, but after an initial investigation we chose to port IceWM due to the low 
number of dependencies (a working XServer and X11 libraries) and the ability to run it 
without OpenGL and D-Bus. Running a window manager and XVNC XServer also required 
porting additional X11 libraries and further dependencies such as a JPEG and PNG 
decoder/encoder libraries and font-rendering libraries. 

XVNC 
When porting the newly required libraries, most incompatibilities were flagged at compile 
time. Firstly, we made changes to cast via uintptr_t instead of long in fontconfig,13 
freetype,14 and libjpeg-turbo15 to retain capability metadata. Additionally, we updated 
freetype2 to use C11 atomics instead of GCC's __sync_* builtins that do not work with 

 
12This includes the following ten libraries: libXau, libxcb, libXTrans, libXext, libXFixes, libXi, 
libXRender, libICE, libSM, libXmu 
13 https://gitlab.freedesktop.org/fontconfig/fontconfig/-/merge_requests/190 (merged) 
14 https://gitlab.freedesktop.org/freetype/freetype/-/merge_requests/52 (merged) 
15 https://github.com/libjpeg-turbo/libjpeg-turbo/pull/538 (merged) 
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CHERI capabilities in all cases.16 Finally, we also submitted fixes to address compiler 
warnings that are errors by default in our toolchain17 and support cross-compilation for 
FreeBSD18. However, some issues only showed up when we tried to start the XVNC server. 
The fontconfig library contained incorrect uses of realloc() (as described in the previous 
subsection) and, separately, created pointers by adding offsets to a different allocation.19 
Both of these are C undefined behaviour and will create out-of-bounds capabilities with 
CHERI that result in run-time crashes. Fixing these issues would have been significantly 
harder without our newly added CHERI Clang/LLVM checks (see the next section for 
details). These changes were sufficient to run X11 applications over XVNC. 

IceWM minimal desktop on top of XVNC 
Running IceWM on top of XVNC required only some minor build-system fixes to support 
cross-compilation, which have now been merged upstream.20 As can be seen on the figure 
below, this minimal desktop provides a start menu, desktop background, application list 
(pager), and a window manager that is responsible for the window decorations. It is also 
possible to change the appearance of the desktop using a theming system. While testing the 
functionality of the desktop, we noticed that selecting one of the default themes (NanoBlue) 
resulted in IceWM crashing due to a CHERI capability bounds violation. As of writing this 
report, we have not attempted to fix this issue -- as the IceWM desktop was only an 
intermediate step on the way to running the full KDE desktop stack. 

 
16 Due to compiler implementation details it is not possible to use these builtins with a capability 
argument, so we have to use the newer __atomic_* builtins or C11 atomics instead. Fix submitted as 
https://gitlab.freedesktop.org/fontconfig/fontconfig/-/merge_requests/192 (merged).  
17 https://gitlab.freedesktop.org/pixman/pixman/-/merge_requests/48 (under review) 
18 https://gitlab.freedesktop.org/freetype/freetype/-/merge_requests/48 (merged) 
19 realloc() fix submitted as https://gitlab.freedesktop.org/fontconfig/fontconfig/-/merge_requests/193 
(under review), but the fix for the second issue has not yet been sent upstream at time of writing. 
20 https://github.com/bbidulock/icewm/pull/601 (merged) and 
https://github.com/bbidulock/icewm/pull/603 (merged) 
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Minimal IceWM desktop running on QEMU and displayed on the host over VNC 

Summary 
Overall, porting XVNC and a minimal desktop was mostly straightforward, with the notable 
exception being fontconfig. Fontconfig's serialization code heavily relied on being able to 
create pointers from arbitrary pointer arithmetic, and this is not compatible with CHERI. 
Attempting to find the sources of invalid pointer arithmetic by setting breakpoints and looking 
at crashes due to invalid capabilities was a very challenging undertaking, so after fixing the 
first case, we investigated compiler instrumentation to find similar issues earlier (see the next 
section). Otherwise, the overall amount of changes to software was always well below 0.1% 
of lines changed and many projects required no changes (or only cross-compilation fixes). A 
summary of the changes can be seen in the table below. 

 

Component Lines of code Language Required adaptations 

IceWM 68 K C++ No changes required for CHERI, only build 
system fixes for cross-compilation. 

XServer 200 K + 
174K 

unused21 

C 6 LoC changed (0.003%) to fix an incorrect use 
of realloc()22 and to fix the -Werror build.23 

libXFont 21K C 4 LoC changed (0.02%) to fix a read one byte 

 
21 This includes code for various XServer implementations such as XQuartz that were not compiled. 
22 https://gitlab.freedesktop.org/xorg/xserver/-/merge_requests/721 (under review) 
23 https://gitlab.freedesktop.org/xorg/xserver/-/merge_requests/720 (merged) 
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before the start of a string.24 

Additional X11 
libraries25 

75K C Unmodified 

Additional X11 
programs26 

36K C Unmodified. 

Freetype 125K C 5 LoC changed to use uintptr_t instead of 
unsigned long 

Fontconfig 28K C 118 LoC changed (0.424%) to add support for 
C11 atomics and fix provenance issues after 
realloc() and when reading serialized data. 

libjpeg-turbo 88K C 10 LoC changed (0.011%) to cast via uintptr_t 
when adjusting alignment 

libpng 57K C 3 LoC (0.005%) changed to use intptr_t 
instead of long when casting. 

TigerVNC 55 K 85% C++ 
15% C 

No changes required for CHERI, only build 
system fixes for cross-compilation.27 

Full KDE Plasma desktop on top of XVNC 
Compared to the initial minimal IceWM, the KDE Plasma desktop has many more features 
and, to provide those features, depends on a large number of libraries and additional 
applications. The underlying foundations of the Plasma desktop are the Qt frameworks [18] 
(including declarative user-interface descriptions requiring the QtQML language runtime), the 
majority of the KDE frameworks, and further libraries providing access to, e.g., hardware 
sensors or plug-and-play device notifications. After porting Qt and the KDE frameworks, we 
ran individual applications (e.g. Gwenview, see figure below) over SSH to verify that they 
worked as expected. After this was confirmed working, we moved on to porting the window 
manager (KWin) and the full desktop running on XVnc. 

 
24 https://gitlab.freedesktop.org/xorg/lib/libxfont/-/merge_requests/10 (merged) 
25 libfontenc, libxcb-cursor, libxcb-image, libxcb-keysyms, libxcb-render-util, libxcb-util, libxcb-wm, 
libxcomposite, libxcursor, libxdamage, libxft, libxkbcommon, libxkbfile, libxpm, libxrandr, libxtst, 
xbitmaps, xcbproto, xkeyboard-config, xorg-font-util, xorg-macros, xorg-pthread-stubs 
26 twm, xauth, xev, xeyes, xkbcomp, xprop, xsetroot 
27 https://github.com/TigerVNC/tigervnc/pull/1290, https://github.com/TigerVNC/tigervnc/pull/1289, 
https://github.com/TigerVNC/tigervnc/pull/1291 (all merged) 
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Rotating an image in Gwenview (running on CheriBSD displayed via X11 SSH forwarding) 

Qt frameworks 
As part of this project we also updated the Qt 5.10 port to the latest LTS release at the time 
(5.15), as the KDE frameworks depend on this version,28 and ported additional modules 
such as QtDeclarative and QtSvg. For QtDeclarative we also had a pre-existing port of 
version 5.10.  However,  much of the QML language runtime was changed so significantly 
for version 5.15 that updating to 5.15 was almost equivalent to starting from scratch. 

Inside QtBase, the majority of changes were related to QByteArray::fromRawData(). This 
function creates a new QByteArray that references the passed argument instead of making 
a deep copy.If the size of the buffer is not passed explicitly this function uses strlen() to 
compute the size of the array. For CHERI this means that the trailing zero byte will not be 
included in the capability bounds when converting this QByteArray to a zero-terminated C 

 
28 The initial code update was undertaken at the University of Cambridge just prior to the start of this 
project, however, as part of this work we had to fix various issues in code paths that had not been 
exercised in previous experiments. Furthermore, this previous work was limited to the QtBase library 
and did not include components such as the QML language runtime. 
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string29, so this can result in a bounds error at runtime. To fix this issue, we introduced a new 
function, QByteArray::fromNulTerminatedRawData(), that sets the size of the array to 
the length of the string but ensures that the trailing zero byte is included in the capability 
bounds. 

The other library that required non-trivial changes was QtDeclarative, as this contains a 
language runtime for the QML language that is used e.g., for most of the Plasma desktop 
user interface. The majority of the language runtime is essentially a JavaScript engine with a 
few additional features. Moreover, it is quite similar to, and (as far as we can tell) partially 
based on, the WebKit JavaScript engine. As we have prior experience with adapting WebKit 
for CHERI, we were able to leverage this knowledge to port QtDeclarative to CHERI C++ 
within about one week rather than the much longer timeframe originally required for WebKit. 
During this porting effort, we encountered multiple instances of capability metadata being 
lost due to implicit casts to uint64_t. Debugging such an issue at run time can be rather 
difficult since the problem usually occurred a long time before the crash happens. Therefore, 
we developed a new compiler diagnostic, -Wshorten-cap-to-int, to diagnose these 
issues at compile time rather than through a run-time crash (see Compiler improvements). 

Unlike our approach for other projects, we did not attempt to upstream our Qt changes while 
undertaking this project, as the Qt frameworks have moved to a new major version (6.2 at 
the time of writing), and many of our changes no longer apply due to major refactorings (e.g., 
the QString data storage implementation was almost completely rewritten) and investigating 
which patches can still be upstreamed was not possible due to the project timeline. 

KDE frameworks 
Out of the 83 KDE frameworks [19], we compiled 55 for CHERI C/C++. The remaining 
frameworks were not used as a dependency of either Plasma desktop or of the applications 
that we chose as demonstrators, so we omitted them due to the project timeline. 

In terms of changes required due to CHERI, we had to make only a single one-line change 
to avoid a one-byte out-of-bounds read.30 Other than this single-line change, the other 
changes that we made were mostly related to fixing cross-compilation issues as most KDE 
users only compile the software for their respective machines (the exception being cross-
compilation for Android, which has slightly different restrictions compared to compiling on 
macOS for FreeBSD).31 We also submitted a few changes that make certain dependencies 
optional (e.g., the KDocTools for documentation or OpenGL for hardware-accelerated 

 
29 This is only a problem when the raw data is accessed directly, since any modification of the 
QByteArray will result in a deep copy which always appends a zero byte. 
30 The code in question was using strlen() to read up to a terminating zero byte, but the 
QByteArray that was being passed had bounds that did not include the zero byte. We fixed this by 
using the .size() member instead of strlen() (https://invent.kde.org/frameworks/kio/-
/merge_requests/493). 
31 https://invent.kde.org/frameworks/solid/-/merge_requests/44 (merged), 
https://invent.kde.org/frameworks/kcoreaddons/-/merge_requests/109 (merged),  
https://invent.kde.org/frameworks/kcoreaddons/-/merge_requests/110 (merged), 
https://invent.kde.org/frameworks/kcoreaddons/-/merge_requests/117 (under review), 
https://invent.kde.org/frameworks/syntax-highlighting/-/merge_requests/220 (merged), 
https://invent.kde.org/frameworks/kpty/-/merge_requests/12 (under review) 
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rendering) as we do not require them for our demonstrator.32 Similarly, we made changes to 
avoid a dependency on Wayland, but did not submit those changes upstream -- as a longer-
term upstream goal is to default to Wayland rather than X11. Finally, we also submitted an 
optimization that significantly reduced application startup times on slow systems.33 

 
Plasma desktop shell (including the QML-based start menu) running on CHERI-RISC-V 

Plasma desktop and applications 
For the KDE applications, we had to make CHERI-related changes to only one application: 
the KWin window manager, which contained an out-of-bounds read. As this memory access 
could potentially have a security impact, we have reported our finding to the KDE security 
team, and have not yet published the fix to any open repositories.34 Other than this, we had 
to make only straightforward (albeit tedious) changes to make certain dependencies 
optional, as we do not have them on our desktop prototype. Many applications 
unconditionally depended on OpenGL, DBus, Wayland, or documentation tools.35 

 
32 OpenGL: https://invent.kde.org/frameworks/kdeclarative/-/merge_requests/64 (merged), 
Documentation: https://invent.kde.org/network/kio-extras/-/merge_requests/110 (merged), 
QML debugger: https://invent.kde.org/frameworks/kdeclarative/-/merge_requests/65 (merged), 
DBus: https://invent.kde.org/frameworks/kdbusaddons/-/merge_requests/10 (merged), 
33 https://invent.kde.org/frameworks/kcoreaddons/-/merge_requests/116 (merged) 
34 The KDE security team reviewed this change after the initial version of this report was completed 
and concluded that it does not warrant a security advisory. The patch has now been published and 
can be seen at https://invent.kde.org/plasma/kwin/-/merge_requests/1400. 
35 Optional OpenGL: https://invent.kde.org/graphics/gwenview/-/merge_requests/95 
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Furthermore, we encountered a long-standing bug in CMake36 that prevented cross-
compilation of the poppler PDF rendering library that is used by the Okular document viewer. 
We submitted a merge request to poppler to work around this issue.37 Finally, we also 
upstreamed minor changes to support cross-compilation (mostly build-system related).38 

 

Various desktop applications running on CHERI-RISC-V 

Summary 
We have submitted the majority of our changes upstream. As of writing this report, almost all 
of these changes have now been merged into the upstream repositories. The table below 
gives an overview of these changes. 

Component Lines of code Language Required adaptations 

KIO 115 K C++ 1 line changed (0.0009% of total) to avoid an 
out-of-bounds read. 

 
Optional DBus: https://invent.kde.org/graphics/gwenview/-/merge_requests/94, 
https://invent.kde.org/system/dolphin/-/merge_requests/231, 
https://invent.kde.org/plasma/kwin/-/merge_requests/1206, https://invent.kde.org/graphics/okular/-
/merge_requests/460 
Optional Wayland: https://invent.kde.org/plasma/kscreenlocker/-/merge_requests/41 (rejected) 
Optional documentation: https://invent.kde.org/system/dolphin/-/merge_requests/230 (merged) 
https://invent.kde.org/graphics/gwenview/-/merge_requests/92 (merged) 
https://invent.kde.org/plasma/systemsettings/-/merge_requests/74 (merged) 
36 https://gitlab.kitware.com/cmake/cmake/-/issues/22414 
37 https://gitlab.freedesktop.org/poppler/poppler/-/merge_requests/887 (under review) 
38 https://invent.kde.org/plasma/plasma-desktop/-/merge_requests/532 (merged), 
https://invent.kde.org/graphics/okular/-/merge_requests/455 (merged), 
https://invent.kde.org/graphics/okular/-/merge_requests/456 (under review), 
https://invent.kde.org/plasma/kscreenlocker/-/merge_requests/42 (merged) 
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60 unmodified KDE 
libraries 

620 K C++ Completely unmodified C++, only some minor 
cross-compilation build system fixes. 

KWin 117 K C++ 38 LoC changed (0.021%) to avoid two out-of-
bounds reads. 
711 LoC changed (0.403%) to make OpenGL 
and Wayland support optional. 

Plasma-framework 
Plasma-workspace 
Plasma-desktop 

28K 
112K 
45K 

C++ No changes related to CHERI, 14/383/39 LoC 
changed in the respective repositories 
(0.049/0.343/0.087%) to make OpenGL, DBus 
and Wayland optional. 

Dolphin 42K C++ No CHERI changes, 13 LoC changed (0.031%) 
to make DBus optional. 

Gwenview 45K C++ No CHERI changes, 23 LoC changed (0.051%) 
to make DBus and OpenGL optional. 

poppler 193K 85% C++ 
15% C 

No CHERI changes, 2 LoC changed (0.001%) 
to silence a warning. Minor CMake build 
system fix for cross-compilation. 

Okular 87K C++ No CHERI changes, 4 LoC changed (0.005%) 
to make dependencies optional and fix 
warnings. 

Systemsettings 4K C++ No CHERI changes, 1 LoC (0.025%) changed 
to make DBus optional. 

QtBase 5.15 1,661 K + 
570K tests + 

77K examples 

C++ 817 LoC changed in the library (0.049%) and 
42 LoC changed in the tests (0.022%).  
No changes to the examples. 

QtSvg 5.15 15 K C++ 12 LoC added (0.078%) to avoid an out-of-
bounds read with empty strings. 

QtDeclarative 5.15 496 K C++ 391 LoC changed (0.079%) 

QtGraphicalEffects 
5.15 

3K C++ No CHERI changes, 8 LoC (0.275%) changed 
to make OpenGL optional. 

Additional libraries 
and programs39 

560 K 68% C 
30% C++ 
2% ASM 

Unmodified other than minor cross-compilation 
changes and non-CHERI warning fixes. 

Complete changes summary 
In total we compiled more than 6 million source lines of code for CHERI C/C++ successfully 
with only a very few changes: 2071 LoC or 0.034%. Of these 2071 changed lines, many 
were unrelated to CHERI; if we exclude changes that are required to make certain 
dependencies optional, we have a total of 1584 changed lines or 0.026% of the total. 

 
39 epoll-shim, exiv2, lcms2, libevdev, libexpat, libinput, libintl-lite, libudev-devd, mtdev, openjpeg, 
pixman, QtTools, QtQuickControls, QtQuickControls2, QtX11Extras, shared-mime-info 
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Compared to previous analyses of porting software to CHERI [6, 17], we find that this rate of 
0.026% is noticeably lower than previously reported values of 0.1% (or 1.4% for the 
FreeBSD kernel40). This lower rate can be attributed to multiple factors: first, improvements 
to compiler analysis and CHERI C/C++ semantics41 over the past few years have removed 
the need for many changes that were previously required. Second, our previous analysis 
showed that higher-level code generally requires fewer adaptations for CHERI C/C++, and 
the software we have ported in this work is mostly higher-level application code rather than 
low-level system libraries or language runtimes (with the exception of QtQml). Finally, a 
large proportion of the ported code is C++ rather than C, and writing code in C++ means 
certain patterns that can cause incompatibilities with CHERI are not used -- since the 
language or standard library provides abstractions for them (e.g., incorrect use of realloc 
rarely happens, since programmers can use classes such as std::vector). We also found 
that conversions between integers and pointers were less common in C++ compared to C, 
since C++ can use templates for generic data structures whereas C must resort to void* or 
intptr_t. 

7. Compiler improvements 
As part of our porting efforts we encountered multiple recurring CHERI-incompatible patterns 
that can at times be awkward to debug. These patterns are often undefined behaviour 
according to the C standard (creation of out-of-bounds pointers), but happen to "work" as 
expected on conventional architectures (at least, until a sufficiently sophisticated optimizing 
compiler attempts to leverage this undefined behaviour for optimization purposes). 

-Wshorten-cap-to-int 
This newly added compiler diagnostic warns whenever a capability is implicitly truncated to 
an integer. This diagnostic catches cases where a pointer that has been stored in a 
uintptr_t is implicitly converted to a smaller integer type before being converted back to 
uintptr_t. If this happens, the result of casting back to a pointer will be missing the 
capability metadata and cannot be dereferenced anymore. It is very similar to the existing 
clang warning -Wshorten-64-to-32 that was added to find the equivalent issue when 
porting from 32-bit to 64-bit (truncating intptr_t via int). This warning was extremely 
useful while porting QtDeclarative since the code uses uint64_t and uintptr_t 
interchangeably for JavaScript object data. The QtQml port would have taken significantly 
longer without this warning, since we would have encountered the problems only at run time, 
rather than through compile-time diagnostics. 

 
40 The change rate of 1.4% is higher than normal in this case since we also support compiling the 
kernel as a hybrid program where every capability needs an explicit __capability annotation. 
41 For example, we changed the CHERI C semantics for casting between capabilities and integers to 
always use the address instead of the capability offset, and we modified CHERI Clang to support 
inferring the provenance source for arithmetic expressions involving multiple capabilities. 
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CHERI UndefinedBehaviorSanitizer 
We also extended the UndefinedBehaviorSanitizer (UBSan) [20] compiler instrumentation to 
leverage CHERI architectural features (bounds and tagged memory) in order to detect 
creation of significantly out-of-bounds pointers. Creating out-of-bounds pointers is undefined 
behaviour in C,42 and therefore the compiler may assume that this does not happen and 
optimize accordingly. However, in our porting efforts we discovered that multiple C libraries 
(e.g., libX11, fontconfig or the X Server) created such pointers due to incorrectly relocating 
pointers after calling realloc(). As conventional CPU architectures do not keep track of 
bounds at run time, this incorrect code appears to work but triggers traps when run as 
CHERI C/C++. The creation of the invalid out-of-bounds pointer and the actual use (i.e., 
dereference) usually occur with a rather large time gap, so a debugger backtrace rarely 
allows programmers to infer where the incorrect code is. After spending significant time 
debugging two such issues, we decided to add compiler instrumentation instead. 

The current implementation of the CHERI UBSan43 relies on the tag-clearing nature of out-
of-bounds pointer arithmetic: a CHERI capability that is significantly out-of-bounds will 
become untagged [15] and thereby non-dereferenceable. This allows us to detect 
significantly-out-of-bounds pointers (guaranteed further than one past the end) by comparing 
the capability tag before pointer arithmetic with the resulting one. If the value changed, we 
can issue a diagnostic message or terminate the program to allow debugging with GDB. This 
new instrumentation can be enabled using a new -fsanitize=cheri-unrepresentable 
command line flag, and it remains possible to mix libraries compiled with and without 
instrumentation. 

In the future, we plan to extend the CHERI UBSan instrumentation to not only detect 
capabilities that have become unrepresentable, but also look at the capability bounds to 
diagnose the creation of capabilities that are more than one element out-of-bounds. This is a 
rather simple change to the instrumentation, but it does add additional run-time overhead 
compared to only checking the capability tag.44 As this more thorough instrumentation was 
not required to debug the libraries and programs used by our chosen prototype desktop 
stack, we have not yet implemented it. 

8. Compartmentalization whiteboarding 
Implementing software compartmentalization can be a substantial software engineering 
activity, and compartmentalization frameworks for CHERI and Morello remain ongoing 
research. As such, we did not attempt to develop end-to-end demonstrations of 
compartmentalization, but instead explored potential applications of compartmentalization in 
the Qt/KDE desktop environment through whiteboard exercises. 

To the extent possible, we have applied knowledge gained in our early software 
compartmentalization work including the Capsicum OS sandboxing framework [21] and also 
in developing software compartmentalization techniques for CHERI [10]. We have taken into 

 
42 With the exception of one-past-the-end pointers which are in fact legal. 
43 https://github.com/CTSRD-CHERI/llvm-project/pull/553 
44 Currently, we would need to compare the computed address to both the lower and upper bounds of 
the capability. This overhead could be reduced by adding an CInBounds instruction to the ISA. 
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account the potential structural and performance improvements introduced by CHERI, such 
as single-address-space operation for multiple processes, and IPC roughly 1.5 orders-of-
magnitude faster than MMU-enabled UNIX IPC, as predicted by on-FPGA CHERI research. 

While CHERI supports a variety of compartmentalization models, we have chosen to 
whiteboard (and evaluate) with respect to a performance-enhanced colocated process (co-
process) model, in which UNIX processes are able to perform substantially accelerated 
context switching and message passing. The practical import for user-level application 
software is that compartments are represented as processes, except that it is then possible 
to assume much faster communications between them making some previously untenable 
compartmentalizations viable. For example, with co-processes, we are able to assume that 
processing all image files within sandboxes is performance-viable, whereas we would not 
normally do that for MMU-based hardware designs. Isolation of software components is 
therefore done by a combination of CHERI protection within user-level and the kernel 
process abstraction when in system calls or traps. 

We are therefore able to assume that FreeBSD’s current Capsicum security model is 
applicable in sketching compartmentalized software policies. Capsicum is a software 
capability-based model in which sandboxed processes are denied access to global 
namespaces, such as the filesystem or network services, unless specifically granted them 
via UNIX file descriptors (in effect, making file descriptors into another kind of capability). We 
can therefore assume, for example, that a sensible compartmentalization of a software 
component would prevent undesired network or filesystem access beyond that specifically 
configured for the use case (privilege minimization). 

Key focuses in our current work were identifying natural ‘fracture lines’ within KDE software, 
with focuses on: 

● Security benefit: Compartmentalization should encapsulate and contain software 
elements with known high risk (e.g., image processing), exposure to untrustworthy 
input (e.g., network connectivity), and/or high-value information (e.g., passwords or 
private keys). 

● Natural encapsulation boundaries: Sandboxed components should align with 
existing public or internal KDE or Qt APIs, providing for clean interfaces and 
benefiting from relatively careful API design with respect to internal data. 

● Performance plausibility: Boundaries are selected that will offer affordable 
overhead either using classical MMU-based IPC or CHERI-enabled co-process IPC. 

It is important to recognize that introducing software compartmentalization can be disruptive 
to the software, if it has not been designed with compartmentalization in mind from inception. 
This is an area deserving of substantial further research, but existing work [22–24] suggests 
that there is reason to hope that automated tooling could reduce the level of engineering and 
improve longer-term maintainability. For the purposes of this work, we assume that 
introducing compartment boundaries along existing encapsulation boundaries and APIs is 
feasible and will be accepted by the affected software communities. 
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Compartmentalization example 1: QImageReader 
We analyzed the list of prior vulnerabilities (see 8. Security evaluation), and clearly saw that 
many of them are related to file format parsing (especially for image formats). We therefore 
believe that isolating the Qt image-parsing code would be one of the most impactful 
applications of compartmentalization in the current desktop stack. When loading/saving an 
image using the QImage/QPixmap/QIcon classes in Qt, the conversion between raw pixels 
and an image format is handled by QImageWriter and QImageReader. These classes 
provide a generic interface that dispatches to file format parsers inside Qt or a large number 
of third-party libraries such as libpng. These classes also include a plugin-based mechanism 
that allows registering handlers for other image formats. In the current version of QtBase, 
reading and writing image data is performed in-process without any form of sandboxing. 
Additionally, these classes expose a small API surface: the only communication is passing 
raw/compressed image data between the application and the compartment. This makes 
these classes much easier to compartmentalize than an API that uses (e.g.) function pointer 
callbacks and/or complex data structures. Finally, the main API is a single read()/write() 
function; therefore we should be able to avoid regular context switches between the main 
application and the compartmentalized image reader/writer. 

We believe that compartmentalizing the Qt image format handlers would have a significant 
security impact, since it would mitigate vulnerabilities in any application that uses Qt to 
render and/or save images. Compartmentalizing the Qt image format handlers would not 
only prevent exploitation of applications that directly load images, but would have also 
mitigated configuration errors such as CVE-2019-7443, where a privileged daemon (running 
as root) that is not normally expected to handle images could be tricked into decoding 
arbitrary user-provided data as an image. This flaw can grant an attacker full control over the 
system using a vulnerability in any of the supported image format libraries. Moreover, 
compartmentalizing the image parsing code would allow returning an invalid QIcon or an 
"image not found" icon if the compartment crashes. This would convert all denial-of-service 
flaws (e.g., NULL-pointer dereferences) in image-rendering libraries such as libpng from fatal 
application crashes into recoverable errors. 

Compartmentalization example 2: Okular's document renderer 
Looking at the application stack ported as part of this work, another clear candidate for 
compartmentalization is the KDE document reader, Okular. It will often be used to read  PDF 
files downloaded from potentially untrustworthy sources; the underlying PDF rendering 
library, poppler, has seen numerous exploitable Common Vulnerabilities and Exposures 
(CVEs) over the past years.45 

Okular uses a plugin architecture to support many different rendering backends in addition to 
PDF files, so the code already uses a higher-level API that does not involve any function 
pointers. For document formats, Okular uses a Generator class that loads the appropriate 
plugin for the current file format and has APIs e.g. to return the raw image data for a given 
area of a page as well as the textual contents. In a previous research project at the 
University of Cambridge in 2015 [25], it was shown that Okular's renderer design can be 

 
45 https://www.cvedetails.com/product/24992/Freedesktop-Poppler.html?vendor_id=7971 
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adapted with relative ease to use process-based sandboxing techniques (in this case 
Capsicum [21] was used). In this work it was also shown that compartmentalization resulted 
in low performance overheads (less than 30ms to transfer the image data from the helper 
process) despite being an unoptimized proof-of-concept implementation. We believe that a 
compartmentalization approach based on CHERI would further reduce this overhead as it 
would allow running code within the same address space, and thereby reduce copying 
overheads. 

Unlike the Qt image reader example, this compartmentalization will mitigate flaws only for a 
single application, but it is to be noted that it is an application with a rather large attack 
surface. One advantage of compartmentalizing applications over libraries is that it can be 
easier to adapt them as the internal APIs can be changed to be more friendly to 
compartmentalization. 

Compartmentalization example 3: KFileMetadata 
KFileMetadata is a KDE framework that provides a plugin-based system to read and write 
descriptive metadata (e.g., image dimensions, document authors, licenses, etc.) embedded 
in various file formats. It is commonly used for file indexing (e.g., the Baloo framework used 
by KDE) or to update metadata when writing files. Reading and writing metadata is 
performed in-process and usually performed by other lower-level libraries (e.g., libexiv2 for 
image formats, ffmpeg for videos, or poppler for PDFs). Many of these libraries have an 
extensive history of exploitable CVEs,46 so we believe compartmentalization would provide a 
significant reduction in attack surface. 

The API provided by KFileMetadata is very high-level, with all of the data processing in the 
internal implementation, and therefore should be easily adaptable to a compartmentalized 
software architecture. To read metadata from a file, users of KFileMetadata must find the 
appropriate extractor plugin for a given file format by calling 
ExtractorCollection::fetchExtractors(). This returns a subclass of 
ExtractorPlugin that implements two functions: extract() to return the metadata and 
mimeTypes() which returns a list of supported MIME types. This architecture is quite similar 
to the one used in Okular, so we believe that the same approach of wrapping the plugin’s 
APIs with a compartmentalized proxy is feasible. 

In terms of vulnerability mitigation, this will most likely have a lower impact than sandboxing 
the Qt image rendering code. However, on KDE Plasma desktops with file indexing enabled, 
untrusted files downloaded from the Internet will be scanned for metadata using Baloo (and 
thus KFileMetadata), which is a very high-risk library -- and should therefore be a prime 
candidate for compartmentalization. 

 
46 https://www.cvedetails.com/vendor/7561/Exiv2.html, 
https://www.cvedetails.com/vendor/3611/Ffmpeg.html, 
https://www.cvedetails.com/product/24992/Freedesktop-Poppler.html 
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9. Security evaluation 
In this section, we review security vulnerabilities from X11, Qt, KDE, and a selection of 
supporting libraries over a five-year period (August 2016 - July 2021)47 to assess whether 
our proposed or actual CHERI adaptations would have impacted the severity of the 
vulnerabilities. This is done as a whiteboarding exercise, due to time and scope constraints, 
but reflects reasonable best estimates of the impacts of CHERI memory protection (including 
temporal heap memory safety) and compartmentalization (as described). A more rigorous 
study would perform more in-depth studies of the specific code paths, ideally with an 
adversarial element to evaluate practical exploitability. 

Information sources 
For each software category, we review the complete set of Common Vulnerabilities and 
Exposures (CVEs) or other announced past vulnerabilities. Where possible, we rely on 
vulnerability lists documented on the web pages of the corresponding open-source project 
websites (e.g., X.org and KDE). However, in some cases, where a project doesn’t maintain 
such a list, we turn to externally maintained lists (e.g., CVE Details48). For software 
components in the former category, researching vulnerabilities was typically straightforward, 
as security advisories provide detailed technical information, references to software changes 
and patches, and important contextual information. Those in the latter category required 
substantially more work to research vulnerabilities across multiple independent websites, 
issue trackers, source repositories, and so on. 

Open-source projects inevitably handle discovered reported vulnerabilities differently -- for 
example, whether all potential vulnerabilities are announced by the project, whether and 
when denial of service is considered a vulnerability, and how vulnerabilities are assigned 
severities. We do not address these potential concerns, given the scope of this project, and 
instead simply review each CVE to offer our analysis of how it might have been impacted by 
CHERI deployment. 

We drew on a blend of information sources, including individual vendor websites as well as 
their issue trackers and source-code repositories, the CVE Details web site, and the National 
Vulnerability Database (NVD).49 In some cases we also turned to analyses presented in OS 
vendor advisories and issue trackers such as those from Ubuntu50 and RedHat51; this was 
especially helpful when analyzing supporting library vulnerabilities, which were rarely 
documented by the vendors themselves. In our analysis, we indicate the primary source(s) 
of vulnerability information used for each project. 

 
47 As noted in the Qt evaluation section, Qt did not have announced vulnerabilities in this period, so 
we reviewed vulnerabilities back through 2011. 
48 https://www.cvedetails.com 
49 https://nvd.nist.gov 
50 https://ubuntu.com/security/notices 
51 https://access.redhat.com/security 
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Advisory and vulnerability descriptions 
Open-source projects with vulnerability disclosure processes request CVEs for specific 
software vulnerabilities. However, their security advisories may address more than one 
vulnerability -- for example, when a set of related vulnerabilities is reported as a result of 
deploying a new static analysis tool, or when auditing for further cases of a newly reported 
vulnerability class. In our analysis, we consider vulnerabilities at the granularity provided by 
the open-source project: one entry per advisory (and potentially multiple vulnerabilities) if 
reported in that way by the project, and otherwise one entry per vulnerability if advisories are 
not issued by the project. 

For each table entry, we report the following: 

● CVE(s): The unique vulnerability identifier(s) reported by the software vendor. 
● Date: The date the vendor released an advisory or patch for the vulnerability. 
● Severity: The indication of vulnerability severity, by the vendor, or our own, if not. 
● Description: A very brief description of the vulnerability or vulnerabilities. 
● Assessment: Our brief assessment of the potential impact of CHERI memory 

protection and compartmentalization on the vulnerabilities. If we have reduced 
confidence in our analysis for a particular vulnerability, we also note that here. 

Severities 
Where open-source projects issue advisories with severities, we report those severities. If 
the projects do not issue advisories, or issue advisories but do not assign severities to 
vulnerabilities, we assign severities as follows: 

● Critical vulnerabilities are those likely yielding or contributing directly to arbitrary 
code execution across a trust boundary (e.g., as the local user following processing 
of an untrustworthy data file, or as the root user when interacting with an unprivileged 
desktop user). 

● Moderate vulnerabilities are those leading to denial of service, or that may 
unnecessarily expose more vulnerable attack surfaces without necessarily 
constituting a vulnerability. For example, an information disclosure might provide 
useful information required to build a successful exploit chain, while not itself 
enabling direct privilege escalation. 

Threat model 
Most of the open-source GUI and desktop code we reviewed did not document a well-
defined threat model. However, as many of the projects have structured vulnerability 
disclosure and review processes, and assign criticalities to disclosed vulnerabilities, we were 
able to reason about their de facto threat models. In general, for the purposes of vulnerability 
analysis and disclosure, the projects were concerned with privilege escalation, private 
data disclosure, and denial of service. 
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Privilege escalation due to arbitrary code execution or file modification 
This appeared to be considered the most important concern spanning almost all vulnerability 
disclosures we reviewed, and tended to fall into one of two categories: 

● Remote to user privilege. With these vulnerabilities, the desktop user is interacting 
with network services (e.g., viewing websites, reading instant messages, 
downloading and handling files, etc.) that are able to trigger local code execution as 
the desktop user. In most cases this is due to memory-safety vulnerabilities, but in 
some it may derive from bugs in (for example) archiving programs that permit 
arbitrary local file replacement as the user. This is trivially escalated to arbitrary code 
execution. 

● User privilege to system privilege. With these vulnerabilities, the desktop user 
interacts with privileged system services (e.g., the window server, screen locker, etc.) 
and is able to trigger local code execution as the privileged user. As above, in most 
cases this is due to memory-safety vulnerabilities, but likewise arbitrary file overwrite 
is trivially escalated to arbitrary code execution. 

The specifics of arbitrary code execution vulnerabilities varied substantially. X11, for 
example, has experienced numerous C-language buffer overflows. KDE also suffered from 
arbitrary code execution vulnerabilities, but these were more typically with respect to logical 
errors, such as by permitting file overwrites due to incorrect enforcement of target directory 
constraints in archiving tools. 

Private data disclosure 
The Private Data Disclosure category relates to library or application logical bugs in which 
private data is improperly disclosed. For example, KDE’s KMail client contained a logical bug 
causing email intended to be submitted encrypted to instead be sent in plain text. This class 
appears to be largely secondary compared to arbitrary code execution, featuring in few 
vulnerability advisories. Nevertheless, private data disclosure is a key attacker end objective 
often achieved via arbitrary code execution. 

Undesired data modification 
Undesired data modification vulnerabilities are most frequently considered to be a means to 
the end of arbitrary code execution; for example, focus is placed on buffer overflows onto 
stack or heap metadata. The broader category of concerns here -- e.g., overflow into 
application data that does not lead to user data corruption -- seems largely unconsidered. 

Denial of service 
Although often assigned a lower severity than vulnerabilities leading to arbitrary code 
execution, denial-of-service vulnerabilities still featured prominently. This was particularly 
true for image-processing libraries, where the implications of a crash could be significant for 
the larger application;they also featured prominently in the KDE vulnerability corpus. CHERI 
memory protection coerces potential arbitrary code execution vulnerabilities into 
deterministic crashes, which may reduce a critical vulnerability to one of low or moderate 
severity -- but does not completely eliminate it. 
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Mitigation 
We consider a vulnerability mitigated if a bug would no longer be considered a vulnerability 
under the vendor’s threat model. However, as vendors rarely publish threat models, and we 
must work with de facto ones, this presents some challenge to analysis. 

Memory safety 
CHERI memory protection in CHERI C and C++ directly mitigates both vulnerabilities (e.g., 
buffer overruns and use-after-reallocation) and exploit techniques (e.g., control-flow pointer 
injection, integer-pointer confusion, and violations of spatial safety in the implementation), 
coercing attempted attacks from arbitrary code execution into software crashes. Cornucopia 
and related techniques can reliably and deterministically implement heap safety when using 
CHERI, and our analysis assumes heap temporal safety is present. These techniques 
collectively can mitigate a substantial proportion of C and C++ vulnerabilities, in which 
simple programming errors yield a high-severity vulnerability, or at least essential steps in a 
larger exploit chain (such as pointer value leakage, or arbitrary write primitives). 

We choose to consider a memory-safety vulnerability mitigated only if CHERI C/C++ directly 
addresses the vulnerability itself (e.g., spatial safety preventing a buffer overflow from 
running into another allocation or global variable, or heap temporal safety preventing use-
after-reallocation). While CHERI may indeed limit exploit techniques -- for example, by 
deterministically preventing pointer reinjection and hence making malicious control-flow 
manipulation more difficult -- it is not currently clear how to best reason about the strength of 
that protection. 

The potential impact of denial of service arising from memory safety triggering a crash is 
extremely application- and use-case dependent. For example, converting a buffer overflow 
into software termination prevents arbitrary code execution, but might still interrupt service 
delivery to the user if it crashes their web browser or window server. On the other hand, a 
command-line tool crashing when processing an untrustworthy image may have little impact 
on user experience. 

Compartmentalization 
CHERI compartmentalization will sometimes be able to mitigate denial of service by limiting 
portions of applications affected by software termination, including when crashes originate 
with memory-safety violations. For example, if image processing is compartmentalized, a 
failed image processing sandbox may lead to a ‘bad image file’ icon in a web or file browser, 
rather than crash of the tab or full application. Reviewing desktop relevant vulnerabilities, it 
was clear that many vulnerabilities arise from the processing of images and other media 
files, and compartmentalizing that processing would have a significant impact on reliability in 
the presence of attempted attacks. 

The extent to which a vulnerability is ‘fully mitigated’ can therefore be hard to determine. We 
take the view that a substantial reduction in effect of a vulnerability (e.g. arbitrary code 
execution to software crash) constitutes a significant mitigation -- but will always note where 
a crash might have a broader impact that itself would need mitigating, and whether software 
compartmentalization would be likely to contribute to further mitigation. 
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When software compartmentalization detects a memory-protection failure (or other fail-stop 
condition), that impact on software can also vary substantially. In some cases, it may be 
possible to entirely mask the failure by restarting a compartment and proceeding to the next 
item of data, such as a packet or message. In other cases, there are clear and user-relevant 
failure modes that can be exposed without interrupting operation. For example, if a memory-
protection exception is caught when rendering an image, a “broken image” icon could be 
displayed, as is the case today when attempting to render a corrupted image file that does 
not contain an exploit. 

However, there may be some cases where compartmentalization is unable to usefully mask 
a failure essential to the operation of affected software. For example, a memory-protection 
error in the X Windows server could lead to termination of the entire desktop session. As we 
review vulnerabilities for potential compartmentalization opportunities, it can sometimes be 
difficult to understand the scope for mitigation without full application context, especially for 
libraries in isolation from a specific application that uses them.  

Depth of analysis 
Due to the limited timeline and scope of this project, we have generally relied heavily on the 
vulnerability analyses provided by the software vendors (e.g., in the vendor’s own revision-
control history or vulnerability announcement), or by a downstream software distribution 
(e.g., Ubuntu or Redhat analysis). In some cases, we performed direct source-code analysis 
where an advisory was unclear or the implications were not fully elaborated. We have 
marked certain vulnerabilities as containing insufficient information, or as low confidence 
analyses, where the nature of the vulnerability was unspecified or unclear, where the threat 
model or vulnerability argument was unclear, or where our confidence in mitigation is lower. 
Given further time, it would be desirable to take our analysis further through closer code 
inspection or experimentation. 

X.org 
The X.org X Window System is a display server along with a collection of device drivers, 
client libraries, and command-line tools supporting desktop graphics for UNIX (and other) 
systems. X.org releases regular security advisories and software updates for reported 
vulnerabilities, from which we have gathered this data, but does not publish an explicit threat 
model or assign severities to vulnerabilities.52  

The threat model around X server vulnerabilities has changed over time. Historically, the X 
server has been run as root due to using user-level device drivers for display hardware. A 
key threat, then, is X client applications exploiting vulnerabilities over their connections to the 
server, potentially granting additional privilege to an otherwise less privileged client program. 
Running the X server as root has become less common, but criticality assessments for 
remote code execution continue to take this potential configuration into account. Our 
presentation of X server vulnerability data also adopts this perspective. 

 
52 https://www.x.org/wiki/Development/Security/ 
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The threat model around X client library vulnerabilities often relates to the potential for 
arbitrary code execution in client programs running with elevated privilege, and connected to 
a potentially malicious X server (or program behaving as an X server). Historically, the 
concern involved setuid root clients linked against X client libraries, which the attacker would 
run connected to a malicious (but unprivileged) X server instance that would be able to gain 
root privilege by sending specially crafted messages, leading to high criticality for such 
vulnerabilities. A significant effort has been invested in deprivileging X client programs for 
this reason, but a number still remain. Our presentation of client-library vulnerability data 
again adopts the X.org perspective. 

In most cases, we assess that while CHERI memory protection will mitigate a vulnerability, it 
will lead to an X server or X application crash that is not easily mitigated by software 
compartmentalization. However, we consider a potential arbitrary code-execution 
vulnerability to be mitigated if it will then deterministically crash rather than allow code 
execution. We have taken the view, for the purposes of this work, that crashes in the X 
server or X client libraries do not lend themselves to mitigation by software 
compartmentalization due to the essential role X11 plays in applications. It could be that 
further analyses show this assumption to be incorrect. 

Vulnerability Date Severity Description Assessment 

CVE-2021-3472 13 April 
2021 

Critical An integer overflow allowed 
out-of-bounds memory 
accesses in the X server, 
which could lead to arbitrary 
code execution. 

Mitigated by memory 
safety (but will cause 
the X server to 
crash). 

CVE-2020-14360, 
CVE-2020-25712 

1 
December 
2020 

Critical Two independent failures of 
input validation in the XKB 
extension allow out-of-
bounds memory accesses in 
the X server, which could 
lead to arbitrary code 
execution. 

Mitigated by memory 
safety (but will cause 
the X server to 
crash). 

CVE-2020-14345, 
CVE-2020-14346, 
CVE-2020-14361, 
CVE-2020-14362 

25 August 
2020 

Critical Insufficient input validation in 
multiple X server extensions 
allow out-of-bounds memory 
accesses, which could lead 
to arbitrary code execution. 

Mitigated by memory 
safety (but will cause 
the X server to 
crash). 

CVE-2020-14363 25 August 
2020 

Critical Integer overflow and double 
free in libx11 locale handling 
could lead to arbitrary code 
execution in X client 
applications. 

Mitigated by memory 
safety (but will cause 
an application crash). 

CVE-2020-14344 31 July 
2020 

Critical Integer overflows and 
signed/unsigned 
comparisons in libX11 input 
methods could lead to 
arbitrary code execution in X 
client applications. 

Mitigated by memory 
safety (but will cause 
an application crash). 

CVE not assigned 25 
October 

Critical Incorrect command-line 
validation in the X server can 

Unmitigated (software 
design error). 
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2018 lead to arbitrary code 
execution, or arbitrary file 
overwrite. 

CVE not assigned 22 August 
2018 

Moderate libXcursor could write one 
byte out of bounds when 
processing Xcursor 
theme files held in a malloc’d 
buffer on the heap, which 
could be a step in a more 
complex attack on an X 
client application. 

Mitigated by memory 
safety (but will cause 
an application crash). 

CVE-2018-14599, 
CVE-2018-14600, 
CVE-2018-14598 

21 August 
2018 

Critical Multiple libX11 library 
memory-safety bugs can 
lead to arbitrary code 
execution in X client 
applications. 

Buffer overruns are 
mitigated by memory 
safety (but will cause 
an application crash). 
Most likely 
compartmentalization 
would not mitigate the 
effects of those 
crashes. 

CVE-2017-12176, 
CVE-2017-12177, 
CVE-2017-12178, 
CVE-2017-12179, 
CVE-2017-12180, 
CVE-2017-12181, 
CVE-2017-12182, 
CVE-2017-12183, 
CVE-2017-12184, 
CVE-2017-12185, 
CVE-2017-12186, 
CVE-2017-12187 

12 
October 
2017 

Critical Multiple buffer overruns in 
the X server’s protocol 
processing can lead to 
arbitrary code execution. 

Mitigated by memory 
safety (but will cause 
an X server crash). 

CVE-2017-13721, 
CVE-2017-13723 

4 October 
2017 

Critical Buffer overruns in the X 
server’s handling of SHM 
and XKB client requests can 
lead to arbitrary code 
execution. 

Mitigated by memory 
safety (but will cause 
an X server crash). 

CVE-2016-5407. 
CVE-2016-7942, 
CVE-2016-7943, 
CVE-2016-7944, 
CVE-2016-7945, 
CVE-2016-7946, 
CVE-2016-7947, 
CVE-2016-7948, 
CVE-2016-7949, 
CVE-2016-7950, 
CVE-2016-7951, 
CVE-2016-7952, 
CVE-2016-5953 

4 October 
2016 

Critical Multiple buffer overruns in 
the X client libraries can lead 
to arbitrary code execution in 
X client applications. 

Mitigated by memory 
safety (but will cause 
an application crash). 

 

We reviewed 11 X.org security advisories to understand the potential applicability of CHERI 
vulnerability mitigation, and found that: 
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● 10 (91%) were likely mitigated by memory safety. 

Overall, CHERI mitigation would likely have achieved roughly a 91% mitigation rate for 
these collections of security issues. Note that many X.org security advisories covered 
multiple underlying vulnerabilities, and so the vulnerability mitigation rate is likely 
substantially higher. 

Qt 
Qt is an open-source GUI toolkit and framework, as well as design tools, providing a variety 
of services such as GUI widgets, I/O handling including audio and video file formats and 
rendering, networking. Qt is used as the baseline set of class libraries for KDE. Qt releases 
regular vulnerability advisories, from which we have gathered these data.53 Due to a lack of 
recent published Qt security advisories, we extended our investigation back through to 2011. 

Vulnerability Date Severity Description Assessment 

CVE-2020-0570 14 September 
2020 

High 
(7.3) 

Library (plugin) search 
including current working 
directory may allow 
elevation of privilege via 
local access. 

Unmitigated (software 
design error). Possibly 
mitigated by 
compartmentalization. 

CVE-2017-
10904CVE-2017-
10905 

JVN#67389262 
JVN#27342829 

22 November 
2017 

High Logic error allows 
malicious users to enable 
a custom debugger binary 
which can result in 
arbitrary code execution 
on Android devices 

Unmitigated (software 
design error). Possibly 
mitigated by 
compartmentalization. 

CVE-2015-1858, 
CVE-2015-1859, 
CVE-2015-1860 

12 April 2015 
 

High 
 

Incorrect parsing of BMP, 
ICO and GIF files results 
in denial of service 
crashes and/or buffer 
overflows. 

Mitigated (buffer 
overflows), denial-of-
service mitigation 
possible with well-
designed 
compartmentalization. 

CVE-2015-0295 22 February 
2015 
 

Low Library logic error results 
in division by zero (denial-
of-service) when decoding 
invalid BMP images 

Unmitigated, partial 
mitigation possible 
with well-designed 
compartmentalization. 

CVE-2015-1290 9 January 
2015 

High Memory corruption bug in 
V8 JavaScript engine 
(included in 
QtWebEngine) allows for 
arbitrary code execution. 

Mitigated by memory 
protection 
(downgraded to DoS). 

CVE-2014-0190 24 April 2014 
 

Low Library logic error results 
in NULL-pointer 
dereference (denial-of-
service) while decoding 

Unmitigated, partial 
mitigation possible 
with well-designed 
compartmentalization. 

 
53 https://www.qt.io/blog/tag/security and the announcements mailing list https://lists.qt-
project.org/pipermail/announce/ 
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invalid GIF images 

CVE-2013-4549 5 December 
2013 
 

Low Library logic error in XML 
parsing could result in 
infinite memory usage and 
thereby denial-of-service 

Unmitigated, partial 
mitigation possible 
with well-designed 
compartmentalization. 

CVE-2013-0254 4 February 
2013 

Low to 
Medium 
 

Library logic error created 
POSIX shared memory 
segments world-writable 

Unmitigated (software 
design error). 

CVE-2012-6093 2 January 
2013 

Low QSslSocket will load error 
code from wrong memory 
location when run with a 
different OpenSSL version 
than the one Qt was 
compiled against 
 

Likely unmitigated (or 
converted to a crash 
depending on 
structure sizes). 
Irrelevant on a 
standard Linux 
desktop deployment. 

CVE-2012-5624 17 November 
2012 
 

Low 
 

XMLHttpRequest allows 
redirection from HTTP to 
file:// scheme which can 
expose local file contents 
to QML applications 

Unmitigated (software 
design error). 

CVE-2011-3194 21 September 
2011 

High Buffer overflow in the 
TIFF image reader allows 
for arbitrary code 
execution 

Mitigated by memory 
protection 
(downgraded to DoS). 
DoS mitigated by 
compartmentalization. 

CVE-2011-3193 22 August 
2011 

High Buffer overflow in the 
HarfBuzz text rendering 
engine allows for arbitrary 
code execution 

Mitigated by memory 
protection 
(downgraded to DoS). 
DoS possibly 
mitigated by 
compartmentalization. 

 

We reviewed 11 Qt security advisories to understand the potential applicability of CHERI 
vulnerability mitigation, and found that: 

● 6 (55%) were likely mitigated by straightforward software compartmentalization. 
● 4 (36%) (overlapping with some of the above) might or would have been mitigated by 

memory protection. 

Collectively, memory protection and compartmentalization would likely have achieved 
roughly a 82% mitigation rate for these collections of security issues. 

KDE 
KDE is an open-source desktop environment including window manager, web browser, file 
manager, contact manager, mail reader, and other applications such as an office suite and 
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graphics package. KDE releases regular vulnerability advisories, from which we have 
gathered these data.54 

Vulnerability Date Severity Description Assessment 

CVE-2021-31855 29 April 
2021 

Low Application logical error in 
KDE e-mail reader 
incorrectly uploads 
decrypted and then deleted 
attachment to mail server. 

Unmitigated (software 
design error). 

CVE-2021-28117 10 March 
2021 

Low Application logical error in 
the KDE package manager 
fails to limit rendered links to 
http/https. 

Unmitigated (software 
design error). 

CVE-2020-27187 17 October 
2020 

Important Application logical error in 
KDE Partition Manager 
could lead to local privilege 
escalation. 

Unmitigated (software 
design error). 

CVE-2020-26164 2 October 
2020 

Important Application logical errors in 
KDE Connect may lead to 
local denial-of-service. 

Unmitigated, possibly 
except for one use-
after-free vulnerability 
that could have been 
further exploitable for 
privilege escalation, 
and would be 
mitigated by memory 
protection. 

CVE-2020-24654 27 August 
2020 

Important Application logical error in 
KDE archiving tool may 
install files outside of target 
directory. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2020-24654 30 July 
2020 

Important Application logical error in 
KDE archiving tool may 
install files outside of target 
directory. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2020-12755 10 May 
2020 

Low Application logical error in 
KDE password wallet 
improperly saves password 
when not asked to. 

Unmitigated (software 
design error). 

CVE-2020-9359 12 March 
2019 

Low Application logical error 
allows arbitrary binary 
execution by KDE PDF 
viewer Okular. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2019-14744 7 August 
2019 

High Application design error 
executes arbitrary command 
lines in .desktop and 
.directory files 

Unmitigated (software 
design error). 

CVE-2019-7443 9 February 
2019 

Medium Unprivileged users can 
trigger parsing of arbitrary 

Mitigated by both 
memory protection 

 
54 https://kde.org/info/security/ 
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data, such as images, in 
privileged daemons via 
kauth framework, which can 
lead to arbitrary code 
execution as root. 

and straightforward 
compartmentalization 
(memory protection 
coerces arbitrary code 
execution into a 
crash). 

CVE-2018-19516 28 
November 
2018 

Low KMail can be tricked into 
opening a remote web page 
even with HTML parsing 
disabled. 

Unmitigated (software 
design error). 

CVE-2018-19120 12 
November 
2018 

Low HTML thumbnail previewer 
improperly accessed remote 
files. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2018-10380 4 May 
2018 

High Filesystem API race allows 
unprivileged user to own any 
file in the system. 

Unmitigated (software 
design error). 

CVE-2018-6791 8 February 
2018 

High Shell syntax embedded in 
VFAT volume labels allow 
arbitrary command 
execution. 

Unmitigated (software 
design error). 

CVE-2018-6790 8 February 
2018 

Low Desktop notifications 
rendered as HTML 
improperly access remote 
files. 

Mitigated by 
straightforward 
software 
compartmentalization. 

CVE-2017-15923 12 
November 
2017 

High An invalid message can 
crash Konversation IRC 
client. 

Unmitigated (software 
design error). 

CVE-2017-9604 15 June 
2017 

Medium Delayed message send in 
KMail disabled OpenPGP 
signing and encryption. 

Unmitigated (software 
design error). 

CVE-2017-8849 10 May 
2017 

High CIFS filesystem browser 
permits running arbitrary 
binaries as root. 

Unmitigated (software 
design error). 

CVE-2017-8422 10 May 
2017 

High Kauth framework fails to 
check remote process 
identity properly, allowing 
arbitrary binary execution as 
root. 

Unmitigated (software 
design error). 

CVE-2017-6410 28 
February 
2017 

Medium Proxy Auto-Configuration 
(PAC) files may trigger the 
leak of full https URL 
information to proxies, which 
can be triggered remotely. 

Unmitigated (software 
design error). 

(None assigned?) 27 
February 
2017 

Medium A bug in KMail handling of 
Outlook file attachments 
allows attackers to write 
arbitrary files in the 
filesystem when the 
attachment is opened. 

Mitigated by 
straightforward 
software 
compartmentalization. 
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CVE-2017-5593 14 
February 
2017 

Important The Kopete instant 
messaging client allows 
Jabber identity 
impersonation. 

Unmitigated (software 
design error). 

CVE-2017-5330 12 January 
2017 

Important The Ark file archiving tool 
allowed maliciously 
constructed tar files to 
trigger execution of arbitrary 
binaries. 

Mitigated by 
straightforward 
software 
compartmentalization. 

CVE-2016-7966 6 October 
2016 

Important A bug in the KMail text 
viewer allowed HTML 
parsing to be enabled 
(otherwise disabled by 
default), which might expose 
other exploitable 
vulnerabilities. 

Some potential 
vulnerabilities might 
be mitigated by 
memory protection or 
straightforward 
software 
compartmentalization 
(memory protection 
coerces arbitrary code 
execution into a 
crash). 

CVE-2016-7967 6 October 
2016 

Critical KMail improperly executed 
received Javascript 
embedded in HTML 
messages in the local 
execution context, including 
allowing local file access. 

Mitigated by 
straightforward 
software 
compartmentalization. 

CVE-2016-7968 6 October 
2016 

Normal KMail improperly executed 
Javascript embedded in 
HTML messages, which 
might expose other 
exploitable vulnerabilities. 

Some potential 
vulnerabilities might 
be mitigated by 
memory protection or  
straightforward 
software 
compartmentalization 
(memory protection 
coerces arbitrary code 
execution into a 
crash).  

CVE-2016-7787 30 
September 
2016 

Important A maliciously crafted 
command line intended to 
be run as root may be 
partially masked, causing 
the user to run commands 
they do not intend. 

Unmitigated (software 
design error). 

CVE-2016-6323 24 July 
2016 

Important The KNewStuff framework 
allowed maliciously 
constructed tar and zip files 
to install files outside of the 
target extraction directory. 

Mitigated by 
straightforward 
software 
compartmentalization. 

 

We reviewed 28 KDE security advisories to understand the potential applicability of CHERI 
vulnerability mitigation, and found that: 
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● 12 (43%) were likely mitigated by straightforward software compartmentalization. 
● 4 (14%) (fully overlapping with the above 12) might or would also have been 

mitigated by memory protection. 

Collectively, memory protection and compartmentalization would likely have achieved 
roughly a 43% mitigation rate for these vulnerabilities. 

Other libraries 
Beyond the windowing system and toolkit libraries (see below), the open-source desktop 
environment depends heavily on a set of libraries that handle common data formats. We 
included in our analysis a sample of these55 including: 

Software 
module(s) 

Description Vulnerability information 
source(s) 

freetype2 Font rendering library (C) Vendor website56 

giflib* GIF image rendering library (C) Vendor issue tracker57, 
CVE Details58 

libjpeg-turbo* JPEG image rendering library (C) CVE Details59 

libpng PNG image rendering library (C) Vendor website60, 
CVE Details61 

libxml2* XML parsing library (C) CVE Details62 

 

Unlike the larger structured open-source projects (X11, Qt, KDE), these libraries typically do 
not come with established vulnerability disclosure processes, nor documented threat 
models. We therefore: 

● Report at the granularity of assigned CVEs rather than announced vulnerability sets, 
which may be finer grained than for reporting for other software components, and 
may also suffer reduced accuracy in terms of our analysis, as the software vendor 
themselves may not have contributed to the explanation of its potential implications 
(e.g., denial of service vs. arbitrary code execution as an outcome, or with respect to 
pertinent threat models). 

 
55 Due to the limited time for this project and the large number of supporting libraries used in a 
contemporary desktop environment, we limited this analysis to five representative libraries. Looking at 
the vulnerability summaries from cvedetails.com, we believe that further interesting case studies 
would have been libtiff (at least 176 CVEs), ffmpeg (365 CVEs), and poppler (at least 68 CVEs). 
56 https://www.freetype.org/index.html#news 
57 https://sourceforge.net/p/giflib/bugs/ 
58 https://www.cvedetails.com/product/33654/Giflib-Project-Giflib.html 
59 https://www.cvedetails.com/product/40849/Libjpeg-turbo-Libjpeg-turbo.html 
60 http://www.libpng.org/pub/png/libpng.html 
61 https://www.cvedetails.com/vendor/7294/Libpng.html 
62 https://www.cvedetails.com/product/3311/Xmlsoft-Libxml2.html 
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● Work with a de facto threat model assuming that data processed by the libraries will 
be from untrustworthy (and potentially malicious) sources attempting to achieve 
arbitrary code execution, private data disclosure, or denial of service. 

 These libraries are marked with a ‘*’ above. 

Vulnerability Date Severity Description Assessment 

CVE-2016-4658 25 
September 
2016 

Critical Libxml2 use-after-free on 
invalid input can lead to 
denial of service or arbitrary 
code execution. 

Mitigated by memory 
protection, but will 
lead to application 
crash, which in turn 
may be mitigated by 
straightforward 
compartmentalization. 

CVE-2016-3177 23 January 
2017 

Critical Giflib double free on invalid 
input can lead to denial of 
service or arbitrary code 
execution. 

Mitigated by memory 
protection, but will 
lead to application 
crash, which in turn 
may be mitigated by 
straightforward 
compartmentalization. 

CVE-2016-10087 29 January 
2017 

Moderate Libpng NULL pointer 
vulnerability on invalid input 
can lead to denial of service. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2017-15232 11 October 
2017 

Moderate Libjpeg-turbo NULL-pointer 
dereference on invalid input 
can lead to denial of service.  

Mitigated by 
straightforward 
compartmentalization. 

CVE-2018-13785 5 April 
2018 

Moderate Linpng integer overflow and 
divide-by-zero on invalid 
input can lead to denial of 
service. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2018-11489 26 May 
2018 

Critical Giflib buffer overflow on 
invalid input can lead to 
denial of service or arbitrary 
code execution. 

Mitigated by memory 
protection, but will 
lead to application 
crash, which in turn 
may be mitigated by 
straightforward 
compartmentalization. 

CVE-2018-11490 26 May 
2018 

Moderate Giflib buffer overflow on 
invalid input can lead to 
denial of service. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2018-1152 18 June 
2018 

Moderate Libjpeg-turbo divide-by-zero 
exception on invalid input 
can lead to denial of service. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2018-14048 13 July 
2018 

Moderate Libpng unspecified 
vulnerability can lead to 
denial of service. 

Mitigated by 
straightforward 
compartmentalization. 
 
(This is a low 
confidence 



 

47 

assessment.) 

CVE-2018-19664 29 
November 
2018 

Moderate Libjpeg-turbo heap-based 
buffer over read on invalid 
input can lead to denial of 
service. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2018-20330 21 
December 
2018 

Critical Libjpeg-turbo integer 
overflow permits heap-based 
buffer overwrite that can lead 
to denial of service or 
arbitrary code execution. 

Mitigated by memory 
protection, but will 
lead to application 
crash, which in turn 
may be mitigated by 
straightforward 
compartmentalization. 

CVE-2019-7317 29 January 
2019 

Critical Libpng use-after-free on 
invalid input can lead to 
denial of service or arbitrary 
code execution. 

Mitigated by memory 
protection, but will 
lead to application 
crash, which in turn 
may be mitigated by 
straightforward 
compartmentalization. 

CVE-2018-14498 7 March 
2019 

Moderate Libjpeg-turbo heap-based 
buffer overread on invalid 
input can lead to denial of 
service. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2017-12652 10 July 
2019 

Low Libpng could allocate 
undesirably large amounts of 
memory due to a missing 
resource limit check against 
a user-specified limit, leading 
to denial of service. 

Mitigated by 
straightforward 
compartmentalization.  
 
(This is a low 
confidence 
assessment.) 

CVE-2018-14550 10 July 
2019 

Critical Libpng utility stack-based 
buffer overwrite that can lead 
to arbitrary code execution. 

Mitigated by memory 
protection, but will 
lead to application 
crash, which in turn 
may be mitigated by 
straightforward 
compartmentalization. 

CVE-2019-15133 17 August 
2019 

Moderate Giflib divide-by-zero 
exception on invalid input 
can lead to denial of service. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2020-13790 9 June 
2020 

Moderate Libjpeg-turbo heap-based 
buffer over read on invalid 
input can lead to denial of 
service. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2020-17541 15 June 
2020 

Critical Libjpeg-turbo stack-based 
buffer overwrite on invalid 
input can lead to denial of 
service or arbitrary code 
execution. 

Mitigated by memory 
protection, but will 
lead to application 
crash, which in turn 
may be mitigated by 
straightforward 
compartmentalization. 
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CVE-2020-15999 19 October 
2020 

Critical FreeType heap-based buffer 
overwrite on invalid input can 
lead to denial of service or 
arbitrary code execution. 

Mitigated by memory 
protection, but will 
lead to application 
crash, which in turn 
may be mitigated by 
straightforward 
compartmentalization. 

CVE-2020-27818 8 
December 
2020 

Moderate Libpng command-line tool 
global variable over read on 
invalid input can lead to 
denial of service. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2021-20205 10 March 
2021 

Moderate Libjpeg-turbo divide-by-zero 
exception on invalid input 
can lead to denial of service. 

Mitigated by 
straightforward 
compartmentalization. 

CVE-2020-23922 21 April 
2021 

Moderate Giflib buffer overread on 
invalid input can lead to 
denial of service. 

Mitigated by 
straightforward 
compartmentalization. 

 

We reviewed 22 vulnerabilities in these supporting libraries to understand the potential 
applicability of CHERI vulnerability mitigation, and found that: 

● 8 (36%) were likely mitigated by memory safety; this was 100% of critical 
vulnerabilities potentially leading to arbitrary code execution. 

● 22 (100%) were likely mitigated by straightforward software compartmentalization, 
including the potential denial-of-service instances arising from mitigation using 
memory safety. 

Collectively, memory protection and compartmentalization would likely have achieved 
roughly a 100% mitigation rate for these vulnerabilities. 

10. Desktop demonstration narrative 
Our investigation suggests a strong argument can be made for CHERI memory protection 
and compartmentalization within a desktop environment. This is because there are 
substantial quantities of memory-related vulnerabilities mitigated by CHERI C/C++ memory 
safety, and also because there is significant useful software modularity that appears to lend 
itself to useful fine-grained software compartmentalization. In particular, components dealing 
with risky data from untrustworthy sources (e.g., media files, email and instant messages, 
network protocol processing, crypto, etc.) are often well modularised, so 
compartmentalization would likely be effective both in directly mitigating vulnerabilities, and 
also in limiting the potential for denial-of-service impact when memory-safety violations are 
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detected. Compartmentalization in key class libraries would have a substantial impact across 
the full application corpus. 

Take for example a presentation package (see figure below). Compartmentalization might be 
productive when implemented at many granularities: sandboxing the application as a whole, 
the processing of each slide, and the processing of each image or other media embedded in 
the slide. Memory safety within image processing compartments would eliminate arbitrary 
code execution arising from the vast majority of exploitable vulnerabilities, coercing them into 
crashes. Compartmentalization would prevent a crash in processing an image from crashing 
the full application, and also mitigate other types of non-memory-safety vulnerabilities, such 
as inserted backdoors or higher-level logical errors. CHERI allows that compartmentalization 

to be substantially more efficient than existing technologies, and therefore potentially be 
affordable at many more boundaries. 

We believe that this approach applies to many other applications, including web browsers, 
mail readers, and messaging applications that process complex data from multiple origins 
during that execution -- all key desktop attack surfaces. 

11. Constructive plan 
Large-scale adaptation of an open-source desktop ecosystem will be a non-trivial 
undertaking due to the size and complexity of the code base, as well as the potentially 
considerable difficulty of thoroughly testing the resulting software stack. We partition our 
analysis and plan in two parts: memory safety and compartmentalization. Although not 
universally true, we generally consider memory safety as a baseline and prerequisite for 
effective compartmentalization. Because of the number of largely independent software 
components in a contemporary desktop stack, there is the opportunity for a highly 
collaborative effort approaching both aspects with considerable concurrency. We do not 
attempt to assign a level of effort to this overall program of work. 

Memory safety 
Our preliminary investigation suggests that, if a developer has even a modest background 
with CHERI C/C++, adapting components from such a stack for memory safety is relatively 
straightforward. Further, memory safety appears to offer a relatively easily achieved, yet 
substantial security win. Many of the changes required fixed actual software bugs (e.g., with 
respect to undefined C behaviour, buffer overflows, and so on). 

The areas of greatest potential concern lie in: 
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● legacy code bases suffering substantial type-related confusion or misuse between 
pointers and integers; 

● code bases that rely on specific properties of the architecture due to, for example, 
implementing a Just-in-Time (JIT) compiler; 

● code bases that are particularly sensitive to the performance overheads associated 
with expanded pointer size, such as language runtimes (some of which already use 
pointer compression techniques to avoid the overheads of 64-bit pointers); or 

● code bases making very flexible or extensive use of function pointers, such as 
language runtimes, where simple recompilation will not be sufficient to eliminate 
memory-safety vulnerabilities (e.g., WebKit [26]). 

We feel that there is a particular gap in knowledge around language runtimes, where it is 
currently difficult to predict the potential scope (and cost) of changes that will need to be 
made. 

A practical engineering challenge to adapting software packages to CHERI C/C++ is the 
difficulty of rigorous dynamic testing, given that many applications have only modest 
coverage in their test suites. This will place a heavy focus on manual testing, which is time 
consuming. 

To properly assess the security impact of CHERI memory protection on this larger software 
corpus, we would also recommend an investment in security review and adversarial testing 
based on a richer retrospective vulnerability analysis than we have been able to perform as 
part of this study. 

Compartmentalization 
Due to the current state of software use of CHERI and Morello’s compartmentalization 
feature, it is harder to envision the engineering challenges in this area. It is likely that an 
initial investment in improving software compartmentalization support in operating systems 
and the toolchain will pay dividends in simplifying compartmentalization work. Another 
concern is the potentially greater software disruption from introducing compartmentalization 
that may perform poorly on conventional hardware platforms, while vendors need to continue 
to support both. Minimising that disruption may be key to software upstreamability (or longer-
term maintainability for a diverged implementation). Tools such as RLBox [23, 24], as they 
mature, may substantially simplify this task. 

That said, this work has shown that a relatively small set of compartmentalization activities 
would likely substantially mitigate a majority of known vulnerabilities. These should ideally 
focus on key data processing and communication libraries and classes; for example, 
compartmentalising: 

● Low-level data processing libraries such as giflib, libpng, freetype2, libxml2, and so 
on, would likely mitigate 100% of known vulnerabilities including denial of service 
issues. This would benefit multiple complete software stacks including KDE and 
Gnome. 

● Archiving and file management libraries, such as those decompressing file archives 
that may lack adequate filtering of filenames and files that should be accessible 
would eliminate several past application-level vulnerabilities. 
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● Network protocol and processing libraries such as HTTP, HTTPS, and so on would 
offer protection when interacting with potentially malicious remote servers and 
clients. 

● Higher-level XML and HTML rendering spanning multiple data files (e.g., HTML 
source, images, …) with embedded language runtimes (e.g., JavaScript) would limit 
the extent to which security enforced by those interpreters is the only line of defence, 
by taking steps to mitigate vulnerabilities when processing instant messages, 
notifications, and so on. 

It is not yet clear to us the extent to which compartmentalization should be applied to higher-
level class libraries (e.g., image rendering in Qt) vs the lower-level open-source libraries they 
wrap (e.g., giflib, libpng). Placing compartmentalization in the former offers the great footprint 
of benefit in terms of consuming applications, but is potentially substantially more disruptive 
due to the potential need for substantial API change. Placing compartmentalization in the 
latter, especially when using cleanly engineered C++ APIs, will be vastly easier but limit 
impact to desktop components that use them -- e.g., KDE, but not Gnome or Chromium. In 
the interests of rapid deployment of compartmentalization, higher-level compartmentalization 
might prove a more efficient investment of engineering effort. 

12. Limitations of this study 
This report describes a pilot study performed over only three months, constraining the 
approaches we could use, and level of depth we could pursue. It was also constrained by a 
number of external limitations. It is easy to imagine a larger-scale study engaging specifically 
with these concerns to increase confidence in the results: 

Software stack 
Due to time constraints, we were able to focus only on one specific (and narrow) desktop 
software stack. However, the chosen X11/Qt/KDE stack is a rich software exemplar 
containing many key elements including a broad spread of C and C++ implementation, code 
of different vintages and programming styles, and many (sometimes competing) objectives. 
We had to exclude some key types of software including GPU rendering code such as the 
kernel Panfrost driver framework and OpenGL in userspace. We were also unable to include 
more complex applications such as full web browsers and office suites (too complex for our 
timeline) and video conferencing packages (which are primarily closed source). While we 
found that the level of effort required to perform our adaptation work was quite low, it is 
important not to project those results to software components such as language runtimes. 

Software adaptations 
We identified challenges to CHERI memory-safety adaptation via two means: compiler 
warnings and dynamic testing. With the former, we were able to rigorously review warnings 
and correct all problems, which typically included issues such as poor integer-pointer type 
use. However, some issues could be detected only dynamically, such as certain types of 
buffer overflows or poor pointer alignment. Our modest enhancements (e.g., CHERI UBsan) 
improved our ability to debug problems found during dynamic testing. However, we were 
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constrained by test suites with generally poor coverage, and had to rely on manual 
exercising, which, given the timeline, was necessarily limited. We are not able to estimate 
the degree to which problems might remain beyond those picked up in our work to date. 

Compartmentalization sketches 
Our compartmentalization sketches were based on existing familiarity with, and careful 
analysis of, the affected code bases. However, experience suggests that one can 
understand the implications of compartmentalized software design only through a detailed 
implementation effort. It is conceivable that compartmentalization boundaries might need to 
be placed differently than we have recommended in order to reduce implementation 
complexity, achieve acceptable performance, and so on. It’s also possible that the 
boundaries we have recommended are not viable in a practical sense. 

Because the QEMU software models don’t attempt to simulate microarchitecture, they are of 
limited value for predictions regarding the performance impact of compartmentalization.63 
We have reasonable confidence that our proposed decomposition is placed along sensible 
lines so as to have acceptable performance, but future experimentation involving a full 
software elaboration and Morello hardware will be required to determine whether that is the 
case. 

It is also important to understand that, in assembling these sketches, we have not 
determined that they cannot be implemented realistically without access to CHERI-enabled 
hardware. It is possible that existing process-based compartmentalization would suffice in 
some cases, although experience from web-browser compartmentalization research 
suggests that this is unlikely. 

Vulnerability information 
Vulnerability information was surprisingly variable in completeness, quality, and level of 
detail across the software projects we investigated. On the whole, larger projects such as 
X.org, KDE, and Ubuntu had highly structured vulnerability management procedures making 
it easy to identify past vulnerabilities and analyse their impacts, even if they did not provide 
specific threat models or explanations of severity. This made it relatively easy to research 
vulnerabilities they reported on, including exploring the source-code implications. Some 
smaller projects, such as giflib and libjpeg-turbo, typically did not have any structured record 
of past vulnerabilities, causing us to rely on third-party sources of mixed reliability. Others, 
such as libpng, provided detailed history and analysis, so this is not universally the case.  

Throughout our research, it would have been incredibly valuable if a uniform (ideally, 
machine readable) presentation of vulnerability data had been available. This would have 
made it easy to find details of the vulnerability and its analysis, any associated patches, 
severity information, context that allowed the vendor to decide that it required remediation, 
and cross references to tools used to discover the vulnerabilities, etc. 

 
63 It is possible to perform limited forms of performance analysis (e.g., instruction-count overheads), 
but realistic results depend on many other factors such as changes to cache misses, etc. 
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Vulnerability analysis 
Time constraints on this project impacted both the breadth and depth of our past vulnerability 
analysis. For larger software components with structured vulnerability management and well 
documented vulnerabilities, reviewing vulnerabilities was straightforward, allowing us to 
review all potentially relevant vulnerabilities. However, with respect to supporting software 
libraries, we had to select a sample of libraries, and spend far more time to identify and 
analyse their vulnerabilities. It is unlikely that our sample is perfectly representative, and care 
should be taken in extrapolating from this study to other open-source software stacks, or 
even to the broader set of supporting libraries that we were not able to analyse within this 
effort. 

In general, we had to limit our analysis of past vulnerabilities to relatively coursory 
classification, relying on existing vendor and third-party analyses to understand the potential 
impact of each vulnerability. We were not able to inspect source-code changes for each 
reported CVE, which we would ideally be able to do in a more in-depth study. This may have 
led to incorrect analyses of the potential impact of CHERI, especially as related to the 
mitigating effects of software compartmentalization. 

If time had permitted, it would have been useful to select a sample of reported vulnerabilities 
and explore them in greater detail using adversarial techniques (i.e., attempt to exploit them 
without CHERI protection, to better understand them, and also more concretely explore how 
CHERI would have helped). This is especially true where vulnerabilities might constitute part 
of a larger exploit chain, but in isolation are not exploitable to achieve code execution (e.g., 
some buffer over reads). This would also have allowed us to better estimate the analysis 
accuracy across the broader corpus. 

More generally, some care is required in using past vulnerabilities to predict potential future 
success for mitigation technologies. New vulnerability classes and exploit techniques arise 
with moderate frequency, especially as relates to memory-safety vulnerabilities, and it will 
need to be assessed, as they arise, the extent to which CHERI can be effective in mitigating 
them. 

13. Reproducing our results 
We have extended the cheribuild framework to allow the adapted software described 
throughout this report to be built and used on the QEMU emulator64 -- albeit very slowly as 
compared to running it on the forthcoming Morello chip. 

On a system that has all required system packages (e.g. compiler, CMake, etc.) installed, 
the following command should allow compiling a pure-capability KDE plasma desktop65: 

cheribuild.py --include-dependencies kde-x11-desktop-morello-purecap 

 
64 The Arm FVP will also work but is significantly slower, so we prototyped on QEMU. 
65 At the time of writing, there were still outstanding compiler bugs that prevented successful 
compilation. We have submitted pull requests to the Morello and CHERI LLVM repositories and 
expect these to be merged shortly, 
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It is possible this command does not complete successfully, as cheribuild will attempt to 
build the latest git snapshot for almost all projects. Certain upstream commits (e.g., API 
changes) could result in a compilation failure for the projects that are currently still using our 
forked repositories. 

In order to run this desktop, you will have to build a disk image that can be started in QEMU, 
boot that image, start the XVNC server and applications, and finally connect to the VNC 
server using TigerVNC (or equivalent software) on your host system: 

Build a disk image, start it and expose the VNC port to the host: 
 cheribuild.py disk-image-morello-purecap run-morello-purecap \ 
   --run/extra-tcp-forwarding=5900=5900 
Once QEMU presents a login prompt, enter "root" to log in (no password required)  and then 
start the VNC server: 
 Xvnc -geometry 1024x768 -SecurityTypes=None & 
Start a shell with the required environment variables: 
 kde-shell-x11 
Start the window manager (kwin_x11) and the Plasma desktop: 
 kwin_x11 & 
 plasmashell 

Once these programs are running, you should be able to view the CHERI desktop by starting 
TigerVNC and connecting to localhost:5900. Some VNC viewers (such as the built-in 
macOS VNC viewer) do not allow connections without a password (-
SecurityTypes=None), so we recommend TigerVNC for now. 

14. Recommendations for future research 
Our work has highlighted some known, but still key, challenges in CHERI adoption, which 
would ideally see further research investment: 

● As described in an earlier section, time and other practical concerns imposed a 
number of limitations on this study. Continuing this work -- e.g., by increasing the 
level of breadth and depth of our analysis of vulnerabilities, or prototyping the 
sketched compartmentalizations, would increase our confidence in, and generality of, 
the results, as well as our ability to give recommendations about the viability of a 
CHERI-enabled open-source desktop software stack. 

● The adoption of C/C++ memory safety appears relatively straightforward across most 
application stacks except for language runtimes, which require both non-trivial 
changes, and also would benefit from greater understanding as to how CHERI can 
improve their robustness. There are also open questions about how to mitigate 
potential performance overhead arising from increased pointer sizes. 

● The current software operational models for compartmentalization are 
immature, and require substantial work to make them ready for mainstream use. 
Further, there is a significant gap around software tooling to assist with designing, 
implementing, evaluating, and maintaining software compartmentalization of libraries 
and applications. 
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● It is also known that compartmentalizing software can be a substantial engineering 
task, if the software was not originally designed with this in mind. It is not clear to 
what extent developers are effective in designing and implementing vulnerability-
mitigating compartmentalizations, or for that matter maintaining them over time in a 
changing baseline source tree. The general topic of how to compartmentalize 
software, and how to evaluate the result, is a topic for substantial further research.  

● This study was unable to concretely engage with performance considerations, 
as it took place in advance of Morello board availability. Based on prior work, it is 
likely that performance overhead will arise primarily in applications with more densely 
pointer-centric memory access patterns. How best to measure and optimize that 
impact is currently unclear, and is an important next step in evaluating the suitability 
of CHERI for vulnerability mitigation in the desktop environment. 

● In CHERI memory-protection work to date, the primary focus has been on limiting 
privilege escalation -- i.e., achieving arbitrary code execution with full user rights, root 
privilege, or kernel privilege. However, it is clear from reviewing vulnerability 
advisories that open-source desktop projects also consider denial of service to 
be a significant concern. Software compartmentalization has the potential to 
address denial-of-service concerns by limiting the scope of a crash or fail-stop (e.g., 
due to CHERI memory protection), which we believe has been under-addressed in 
existing CHERI compartmentalization research. This is an area deserving of more 
research attention, especially in the desktop context. 

● Throughout, there remains a key question regarding the potential for disruption to 
existing software stacks -- from Application Binary Interfaces (ABIs), to modest 
source-code level changes required for memory safety, to more substantial structural 
changes required for compartmentalization. Evaluating this impact, as well as 
investigating techniques to reduce it, will be key to successful CHERI software 
deployment not just in desktop software stacks, but also throughout the broader 
software corpus and ecosystem. 

● In this work we have focused solely on memory protection and compartmentalization 
for software executing on general-purpose CPUs. Graphics Processing Units (GPUs) 
are essential parts of contemporary desktop workstations and mobile devices. There 
is currently not a good understanding of how CHERI should be integrated with 
GPUs -- or how CHERI-enabled software on a general-purpose CPU attached to a 
CHERI-unaware GPU (such as on the Morello SoC) should protect itself. 

● The focus of this work has been software vulnerability mitigation, but hardware 
vulnerabilities affecting isolation are also important. Transient execution attacks on 
CHERI compartments can leak information via side channels (e.g., caches). 
Further hardware and software research is required to mitigate this vulnerability using 
a combination of hardware and software mechanisms. Formal contracts and 
associated proofs need to be investigated to ensure that key invariant properties of 
capability-based compartmentalization are preserved at every level of abstraction. 

15. Related work 
This project takes place within, and extends, a large body of research around vulnerability 
mitigation, memory safety, and software compartmentalization. 
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The Microsoft Security Response Center (MSRC)’s 2020 study of the potential impact of 
CHERI on the Microsoft software stack [27] is the most closely related work, which both 
analyzes the impact of past vulnerabilities and performs an adversarial analysis of CHERI C 
and C++, although does not look at the potential cost of software adaptation, nor at 
compartmentalization. More generally, the CHERI software adaptation literature (e.g., 
CheriABI [6] and Richardson’s 2019 PhD dissertation [17]) considers many of the same 
concerns with respect to software compatibility, but has been focused on a more classical 
UNIX server environment; it has provided a less detailed vulnerability analysis, however. 

Current directions in CHERI software compartmentalization are not only inspired by, but also 
directly depend on, the compartmentalization approach developed in our earlier work on 
Capsicum [21], an OS capability model for sandboxing software. It is also entirely 
reasonable to contemplate a composition of the co-process compartmentalization model with 
other OS access-control and sandboxing schemes, such as SELinux [28] or the iOS 
Sandbox model [29].  

Beyond the CHERI research ecosystem, practical memory-safety techniques have played an 
important role in mitigating vulnerabilities, with the space well described by Szekeres, et al. 
[30]. Pure software techniques such as Control-Flow Integrity (CFI) [31], and also hardware-
based techniques such as Arm’s Pointer Authentication Codes (PAC) [32], are starting to 
see widespread deployment; e.g., within the Windows, Android, and Apple ecosystems. The 
scopes of these techniques tends to be limited to narrower interventions into attacks on 
control flow such as Return Oriented Programming (ROP) [33] and Jump Oriented 
Programming (JOP) [34], rather than seeking to provide more general spatial and temporal 
memory protection as found in CHERI C and C++. They also tend to be probabilistic and 
secrets based, so can themselves be subject to vulnerabilities through information leakage 
or simple brute forcing. 

Compiler-based memory-safety and other “sanitizers”, such as LLVM’s Address Sanitizer 
(ASAN) [35] and Undefined Behavior Sanitizer (UBSan) [20] have been extremely valuable 
in identifying potential vulnerabilities during development or in post-development fuzzing. It 
was clear during our vulnerability review that many had been found using extensive fuzzing 
exploration while employing ASAN. These techniques tend not to be suitable for more than 
limited production deployment due to their performance overheads or risks of false positives 
-- however, it is clear that any vulnerability discovered and prevented before a product is 
fielded is one that does not need to be mitigated in the field! 
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17. Conclusion 
In this report, we’ve described a three-month long three-staff-month research study into the 
potential applicability of CHERI memory protection and CHERI software 
compartmentalization to an open-source desktop stack based on X11 and KDE. During this 
effort, we adapted a substantial volume of desktop and supporting code to run memory-safe 
using CHERI C/C++, improved the CHERI C/C++ compiler, and also created a set of 
“compartmentalization sketches” exploring potential software compartmentalization 
opportunities within that stack.  

We also performed a detailed retrospective study of the potential impact of CHERI 
vulnerability mitigation on five years worth of vulnerabilities across a subset of the adapted 
software stack. Our results are extremely exciting: It appears that key elements of the stack 
were adapted for memory-safe execution with little difficulty (0.026% LoC changed), and that 
CHERI memory safety and CHERI software compartmentalization had a strong potential 
mitigation impact (ranging from 40% of past vulnerabilities for KDE up to 100% in key 
supporting libraries). We described a number of limitations to our study, and key directions 
for ongoing research and development. 

We also recommended a future development strategy premised on rapidly deploying 
memory safety to see immediate and strong vulnerability mitigation, allowing selected 
compartmentalization projects to mature the CHERI software compartmentalization 
infrastructure while offering substantial further mitigation. Overall, we have found that 
creating a more secure desktop environment for the Arm Morello board, shipping in 2022, is 
both feasible and likely to offer substantial security improvements over conventional 
hardware platforms. 
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Appendix A: full list of build targets for the desktop 
For our desktop demonstrator software stack we compiled the following cheribuild build 
targets. Each of these targets maps to an upstream Git repository that has successfully been 
compiled and run as CHERI C/C++. For certain targets we also have to build a version for 
the host operating system as it provides, for example, build tools required for cross-
compilation. These targets are highlighted by a -native suffix. In total, we have adapted 150 
repositories (with over 6 million lines of C and C++ code) for this work. Two of these 
repositories had already been ported in previous work and two further repositories had a 
partial pre-existing port of an older version that we updated and improved. The remaining 
146 were newly adapted in this three staff-month project.

attica 

breeze 

breeze-icons 

dejavu-fonts 

dolphin 

epoll-shim 

exiv2 

extra-cmake-modules 

extra-cmake-modules-native 

fontconfig 

freetype2 

gwenview 

icewm 

kactivities 

kactivities-stats 

karchive 

karchive-native 

kauth 

kbookmarks 

kcmutils 

kcodecs 

kcompletion 

kconfig 

kconfig-native 

kconfigwidgets 

kcoreaddons 

kcoreaddons-native 

kcrash 

kdbusaddons 

kde-x11-desktop 

kdeclarative 

kdecoration 

kded 

kfilemetadata 

kframeworkintegration 

kglobalaccel 

kguiaddons 

ki18n 

ki18n-native 

kiconthemes 

kidletime 

kimageformats 
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kinit 

kio 

kio-extras 

kirigami 

kitemmodels 

kitemviews 

kjobwidgets 

knewstuff 

knotifications 

knotifyconfig 

kpackage 

kpackage-native 

kparts 

kpeople 

krunner 

kscreenlocker 

kservice 

ksyndication 

ksyntaxhighlighting 

ksyntaxhighlighting-native 

ktextwidgets 

kunitconversion 

kwidgetsaddons 

kwin 

kwindowsystem 

kxmlgui 

lcms2 

libevdev 

libexpat (pre-existing) 

libfontenc 

libice 

libinput 

libintl-lite 

libintl-lite-native 

libjpeg-turbo 

libkscreen 

libksysguard 

libpng 

libqrencode 

libsm 

libudev-devd 

libx11 

libxau 

libxcb 

libxcb-cursor 

libxcb-image 

libxcb-keysyms 

libxcb-render-util 

libxcb-util 

libxcb-wm 

libxcursor 

libxcomposite    

libxdamage 

libxext 

libxfixes 

libxfont 
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libxft 

libxi 

libxkbcommon 

libxkbfile 

libxmu 

libxpm 

libxrandr 

libxrender 

libxt 

libxtrans 

libxtst 

mtdev 

okular 

openjpeg 

phonon 

pixman 

plasma-desktop 

plasma-framework 

plasma-workspace 

poppler 

prison 

qqc2-desktop-style 

qtbase (pre-existing, but updated) 

qtbase-native (pre-existing, but updated) 

qtdeclarative 

qtgraphicaleffects 

qtquickcontrols 

qtquickcontrols2 

qtsvg 

qttools 

qtx11extras 

shared-mime-info 

shared-mime-info-native 

solid 

sonnet 

sqlite (pre-existing) 

systemsettings 

threadweaver 

tigervnc 

twm 

xbitmaps 

xcbproto 

xev 

xeyes 

xkbcomp 

xkeyboard-config 

xorg-font-util 

xorg-macros 

xorg-pthread-stubs 

xorgproto 

xprop 

xsetroot 

xvnc-server 

 


