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Executive Summary
This document presents the results of a pilot research project of approximately 4 staff
months, with 2 research engineers over 6 calendar months duration, into the challenges and
opportunities for the use of CHERI memory safety and compartmentalisation in multi-tenant
server environments. In this project, we focus on web services – a software component or
system designed to support interoperable machine- or application- oriented interaction over
a network. The project’s goals are to provide memory safety and fine-grained isolation to
web service software components which would be difficult, non-performant, and disruptive to
achieve with conventional approaches.

This project has ported a total of 1.7 million lines of server-side software to memory safe
CHERI C/C++. The porting effort has been for the most part straightforward, affecting
approximately 0.1% of the total lines of code. The scope and size of the code changes is
consistent with previous reports on CHERI C/C++ software porting efforts.

To assess potential performance impact, we ran experiments on Arm's Morello prototype
board. Morello is a first-generation implementation of CHERI in an out-of-order processor,
and reported overheads should therefore be treated as strict upper bounds in estimating
performance on future, optimised processor designs. Detailed microarchitectural
experiments at Arm and the University of Cambridge, published in late 2023, suggest that a
production design would experience a 80%-88% reduction in CHERI overhead relative to
performance on the Morello prototype.

Keeping in mind the limitations of the Morello prototype, our experimental, memory-safe port
of the nginx web-server to Morello exhibits a 2% reduction in requests/sec compared to the
baseline, non-memory safe version serving a 1kB file of random data from a HTTPs
endpoint. The initially unoptimised library compartmentalisation significantly impacted nginx’s
performance. This was improved to a 4% reduction using a compartmentalisation policy that
elides domain transitions that don’t benefit security. The performance overhead for our
gRPC (a high-performance Remote Procedure Call framework) exhibits a 16% reduction in
messages/sec for the insecure and SSL workloads when compared to the baseline
non-memory safe version. Library compartmentalisation introduces an additional 12% to
14% reduction in messages/sec, which was reduced down to about 6% to 9% with the use of
a custom library compartmentalisation policy. The performance results show that our
prototype was able to scale to many millions of domain transitions per second with relatively
low overheads on top of CHERI memory safety. Although the measured performance
impacts are significant, without further detailed performance work to optimise the current
implementation and explore the potential for improvement on a more mature
microarchitecture, the root causes for the measured performance overheads remains to be
fully explained.

We have reviewed past vulnerabilities for the main components of our software stack. We
estimate the impact of CHERI memory safety on a relevant subset of past vulnerabilities,
limiting the analysis to those vulnerabilities that are part of the assumed threat model for
server-side software components: remote code execution, disclosure of private data, and
denial of service. The nginx webserver exhibits a potential mitigation rate of around 46% and
Redis (an in-memory cache) between 38% to 52%. Both are in line with previous analysis of
past vulnerabilities with respect to CHERI memory safety. For the Postgres database only
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between 12% and 18% of vulnerabilities are considered to be mitigated by the CHERI
memory safety protections, which can be attributed to the prevalence of access-control
vulnerabilities in this software’s vulnerability history. We also evaluate the effects of library
compartmentalisation on past vulnerabilities observing that a further 15% of nginx
vulnerabilities may be mitigated by compartmentalising nginx dynamic modules, increasing
the total mitigation rate to 61%; this is under the assumption that the compartmentalisation
model can provide at least partial mitigation for denial of service attacks.

As a result of this project, the maturity of the library compartmentalisation model has
significantly increased. We provide the first real-world C and C++ use cases of library
compartmentalisation which motivated improvements in domain transition observability, as
well as performance improvements in the form of globally applied and specialised
compartmentalisation policies. In future work, we aim to refine our performance
measurements and analysis, building on work by Arm and the University of Cambridge to
characterise Morello’s performance behaviour, and also by pursuing a measurement and
optimization cycle against our software case studies.
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1. Introduction
This document presents the results of a pilot research study of approximately 4 staff months,
with 2 research engineers over 6 calendar months duration, into the challenges and
opportunities for the use of CHERI memory safety and compartmentalisation in multi-tenant
server environments, providing memory safety and fine-grained isolation which would be
difficult, non-performant, and disruptive to achieve with conventional non-CHERI
approaches. In this project we focus on web services - a software component or system
designed to support interoperable machine- or application- oriented interaction over a network.
In addition to providing a broad scope for exploitation of the project’s outputs (both in
Defence applications and for the wider Arm Morello community), the focus on web service
software stacks was chosen because:

1. They use a relatively small set of common open-source components, constraining
the pilot project’s scope to something feasible.

2. Memory-safety vulnerabilities are still common within these components.
Furthermore, in many cases, modern memory-safe languages only provide a
wrapper around these components and some of the benefits of using memory-safe
languages are lost. An example of this approach is given by the gRPC project.

3. Many components commonly trade off isolation for performance (processing multiple
requests within a single thread); such tradeoffs can be revisited with CHERI-based
isolation and systematically evaluated.

4. Individual requests present a natural isolation boundary that is challenging to enforce
with conventional isolation technologies without significantly degrading performance.

CHERI memory safety can be applied to C- and C++-language software providing
high-levels of mitigation for memory safety issues typically with a low level of disruption to
the source code; with the risk of higher levels of “friction” for specific types of software such
as language runtimes. This pilot project is the first research study that we are aware of that
explores the application of the CHERI protection model in server-side environments.
Therefore, one of the project’s key goals was to conduct a preliminary exploration to
understand whether previously reported estimates of porting effort and security mitigation
levels with the CHERI protection model - for example, in desktop software - remain broadly
representative for server software. Secondly, the project provides a real-world use case to
explore experimental compartmentalisation models. This exploration was performed as a
co-design activity with the compartmentalisation model developer, driving improvements
based on the feedback and experience of real users.

This project is among first explorations of the security and performance of the CHERI library
compartmentalisation model developed at the University of Cambridge. Library
compartmentalisation is an experimental feature implemented by the CheriBSD runtime
linker by adding an additional level of indirection to the normal runtime linking process via a
CHERI domain transition trampoline. As dynamic libraries typically encapsulate a
well-defined and distinct set of responsibilities, such as image decoding or cryptographic
operations, they present a natural isolation boundary based on subject matter. Furthermore,
as many libraries perform operations that are common sources of vulnerabilities and also
operate on untrusted data, isolating libraries has the potential to mitigate a significant
percentage of real-world vulnerabilities.
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Web services are a demanding use case for compartmentalisation, as they seek to balance
performance and security goals. CHERI-based compartmentalisation models have potential
to significantly disrupt established tradeoffs, for example allowing much-finer grained
isolation that would be possible with process or hardware enclaves based approaches. This
project will provide a preliminary assessment as to whether CHERI-based isolation can
realise that potential in real-world usage.

This report is structured as follows:

● Background: provides some background on CHERI C/C++, Arm Morello, and the
Library Compartmentalisation model explored in this project.

● Memory safety: describes the porting of web service stack software components to
CHERI C/C++ on Arm’s Morello board, providing a qualitative and quantitative
analysis of the porting experience.

● Library compartmentalisation: prototyping work exploring the feasibility of
employing the CHERI-based library compartmentalisation model in web server
software.

● Performance Evaluation: preliminary performance evaluation results of the gRPC
and nginx ports under various software configurations including an optimised default
policy developed in response to early project findings. For the purpose of better
characterising CHERI performance, we compile the gRPC and nginx benchmarks
using the CHERI benchmark ABI, this is a modified version of the pure-capability ABI
that works around a number of shortcomings of the Morello architecture and
implementation that are deemed to be fixable in a mature architecture and processor
design.

● Security Evaluation: an analytical study of past vulnerabilities and their potential
mitigation with CHERI-based memory-safety and compartmentalisation for each of
the main software components ported in the project.

● Future research and roadmap: provides recommendations for future research
challenges and opportunities for the use of CHERI memory safety and
compartmentalisation technologies in server side.

● Conclusions: conclusions of the project.

2. Background
Developed by SRI International and the University of Cambridge, CHERI (Capability
Hardware Enhanced RISC Instructions) is a computer processor architecture protection
technology supporting the implementation of fine-grained referential, spatial, and temporal
memory protection, as well as enabling scalable software compartmentalisation. The CHERI
protection model has been applied to multiple Instruction-Set Architectures (ISAs) including
64-bit MIPS, 32- and 64-bit RISC-V, and 64-bit ARMv8-A, known respectively as
CHERI-MIPS, CHERI-RISC-V, and Arm Morello.

Arm’s Morello board, processor, and System-on-Chip (SoC), a Digital Security by Design
technology, shipped in early 2022. The Morello SoC is an experimental CHERI-enabled,
high- performance, multi-core, multi-GHz design that includes a GPU, and will be the first
platform suitable for use as an experimental CHERI-extended server system. As Morello is a

6



first-generation implementation developed as an experimental prototype, it has a number of
limitations, including relating to performance, documented in a technical report from Arm and
the University of Cambridge, which will contextualise performance and other results in our
report.1

CHERI C and C++

The CHERI C and CHERI C++ programming languages utilise CHERI’s architectural
capabilities to implement and protect language-level pointers and the data to which they
refer, as well as sub-language data structures such as the stack, GOTs (Global Offset
Tables, used to access global variables), and other portions of the language runtime. This is
referred to as pure-capability code, as all pointers, explicit and implied, are represented as
capabilities rather than integers. CHERI C and C++ are implemented by the CHERI-
extended CHERI Clang/LLVM compiler suite. This provides strong referential safety
(protecting pointers) and spatial safety, which we assume in our retrospective vulnerability
analysis. In general, when we describe “porting software to Morello,” we mean adapting it to
compile and run correctly with CHERI C/C++.

Adapting software to CHERI C and C++

Adaptation of contemporary C and C++ source code to CHERI C and C++ is often
straightforward, requiring limited minor improvements in C type usage detected by the
compiler (for example, to deconflate integer and pointer values).2 Where the compiler emits
a warning or error we are able to rigorously review this and correct. However, some issues
only manifest dynamically (at runtime), such as invalidation of capabilities by pointer
arithmetic, insufficiently strong alignment in custom memory allocator, non-blessed memory
copies (for example, in sorting algorithms), or insufficient pointer alignment. Enhancements
such as CHERI UBsan have modestly improved the ability to identify problems previously
only found during dynamic testing. However, we are still greatly reliant on dynamic testing.
This testing is constrained by both the completeness of the test suites (which in some cases
provide poor coverage) and the time available within the project to perform testing. We are
not able to estimate what problems might remain beyond those resolved in the scope of the
project.

CheriBSD and CheriABI

CheriBSD, a CHERI-extended version of the open-source FreeBSD operating system,
implements a pure-capability CheriABI process environment able to execute CHERI C/C++
code. Under CheriABI, the kernel, run-time linker, and system libraries cooperate to support
the compiler in implementing strong and fine-grained memory protection. In addition to

2 Robert N. M. Watson, Alexander Richardson, Brooks Davis, John Baldwin, David Chisnall, Jessica
Clarke, Nathaniel Filardo, Simon W. Moore, Edward Napierala, Peter Sewell, Peter G. Neumann.
CHERI C/C++ Programming Guide. Technical Report UCAM-CL-TR-947, University of Cambridge,
Computer Laboratory, June 2020. URL: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf

1 Robert N. M. Watson, Jessica Clarke, Peter Sewell, Jonathan Woodruff, Simon W. Moore, Graeme
Barnes, Richard Grisenthwaite, Kathryn Stacer, Silviu Baranga, Alexander Richardson. Early
performance results from the prototype Morello microarchitecture, Technical Report
UCAM-CL-TR-986, Computer Laboratory, September 2023. URL:
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-986.pdf
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fine-grained memory protection since v22.12 CheriBSD has included experimental support
for library compartmentalisation.

Library Compartmentalisation
In the face of sophisticated and well resourced threat actors, it is difficult to prevent the
exploitation of a catastrophic software security vulnerability. Software compartmentalisation
is a strong form of vulnerability- and attack-independent security mitigation that decomposes
larger software applications into isolated components, limiting the privileges gained and
further exposed attack surfaces reached by attackers. As dynamic libraries typically
encapsulate a well-defined and distinct set of responsibilities, such as image decoding or
cryptographic operations, they present a natural isolation boundary based on subject matter.
Furthermore, as many libraries perform operations that are common sources of
vulnerabilities and also operate on untrusted data, isolating libraries has the potential to
mitigate a significant percentage of real-world vulnerabilities. However, it is currently unclear
how well the software engineering imposed boundaries of libraries align with the desired
security boundaries in practice.

Library compartmentalisation is an experimental feature implemented by the CheriBSD
runtime linker by adding an additional level of indirection to the normal runtime linking
process via a CHERI domain transition trampoline. In this model, as with models found in
managed languages, arbitrary code executing within a library is able to reach only the
interfaces and global variables explicitly exposed during the linking process. Policies may
then be imposed on appropriate dependencies for a library – for example, permitting
side-effect free APIs (pure functions) such as memcpy and memset unconditionally, but
restricting use of I/O APIs for a compute-only library.

By applying the library compartmentalisation to large and complex server SW components
we expect that further limitations and implementation issues will be discovered. By working
closely with the Cambridge University developer, Dapeng Gao, we will seek to address such
issues and improve the maturity of the prototype. In addition, our work is expected to identify
opportunities to shape the future development direction of the compartmentalisation model in
areas such as the specification of security policy, performance optimisations, and
observability.

3. Memory safety
Our starting point in this project was an open-source web service software stack similar to a
traditional LAMP (Linux/Apache/MySQL/PHP) running without memory safety on
conventional, non-CHERI hardware. In our design, we have replaced Linux with CheriBSD
and have chosen a set of comparable software components that are expected to be
straightforward to port to CHERI C/C++ on Morello within the scope of the project. The SW
stack used in the project includes several popular web service software components such as
the nginx web server, Redis cache, and Postgres database in order to analyse the portability
and security benefits for real-world, high-performance server software. Porting this SW stack
to CHERI C/C++ brings referential and spatial memory safety to code bases that are
routinely used in production environments for mission critical applications that demand
high-levels of performance and availability.
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Initially we had proposed that the popular MySQL server database was included in our
software stack. However, during a preliminary investigation of the porting effort, it was found
that porting of MySQL resulted in a significant level of friction. Therefore, this component
was substituted for PostgreSQL, for which a legacy port to CHERI (performed by Alex
Richardson at the University of Cambridge) was already available. Although MySQL server
is not part of the project’s software deliverables, our experience with porting MySQL is
discussed in the qualitative evaluation.

The web service stack ported to CHERI C/C++ is shown in the Figure below:

Figure - Web services stack
Summary of the role of the software components that are ported to the Morello platform as part of this project.

The following table shows the web service stack software components and their versions
that have been ported to memory-safe CHERI C/C++ within the project:

Component Description Version Status of ported software

nginx nginx is a web
server that can
also be used as a
reverse proxy,
load balancer,
mail proxy and
HTTP cache
(currently most
deployed web
server
accounting for
34.1%3).

1.22.0 https://github.com/CTSRD-CHERI
/nginx/tree/release-1.22.0-with-ch
eri-fixes

To be included in a future
CheriBSD ports release, with
support for the core HTTP/s and
HTTP v2/3 modules.

3 Zubin Tavaria. 2021. Now the world’s #1 web server, NGINX looks forward to an even brighter
future. NGINX. Retrieved March 14, 2024 from
https://www.nginx.com/blog/now-worlds-1-web-server-nginx-looks-forward-to-even-brighter-future/
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Component Description Version Status of ported software

Redis Redis is an
open-source
in-memory
storage, used as
a distributed,
in-memory
key–value
database, cache
and message
broker, with
optional durability
(currently most
deployed NoSQL
database, and
6th most
commonly
deployed
database
globally4).

7.0.5 https://github.com/CTSRD-CHERI
/redis/tree/7.0.5-with-cheri-fixes

To be included in a future
CheriBSD ports release.

Protobuf Google's
language-neutral,
platform-neutral,
extensible
mechanism for
serialising
structured data.

3.20.1 https://github.com/CTSRD-CHERI
/protobuf/tree/v3.20.1-with-cheri-fi
xes

To be included in a future
CheriBSD ports release.

µpb µpb (aka upb) a
small protobuf
implementation
written in C.

Commit
bef5368

https://github.com/CTSRD-CHERI
/upb/tree/upb-grpc-cheri

To be included in a future
CheriBSD ports release.

gRPC Cross-platform
open source high
performance
remote
procedure call
framework,
initially created
by Google.

1.48.1 https://github.com/CTSRD-CHERI
/postgres

To be included in a future
CheriBSD ports release.

4 DB-Engines Ranking. DB-Engines. Retrieved March 14, 2024 from
https://db-engines.com/en/ranking
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Component Description Version Status of ported software

Abseil-cpp Open source
collection of C++
libraries drawn
from the most
fundamental
pieces of
Google's internal
codebase.

20220623.0 https://github.com/CTSRD-CHERI
/abseil-cpp/tree/cheri-20220623.0

Further porting work required to
more cleanly address
optimisations in Abseil.

PostgreSQL Open-source
relational
database
management
system (RDBMS)
emphasising
extensibility and
SQL compliance
(currently 4th
most commonly
deployed
database
globally5).

15 beta 4 https://github.com/CTSRD-CHERI
/postgres

To be included in a future
CheriBSD ports release.

Quantitative evaluation
CHERI memory safety is a relatively mature research technology and can be applied to C-
and C++-language typically with a low level of disruption (for example as in our port of a
desktop software stack), although with the risk of higher “friction” for specific types of
software such as language runtimes. It has been shown that the cost of introducing CHERI
spatial memory safety is not straightforward to characterise as it depends on factors such as
the nature of the software being ported and whether the code base already cleanly supports
multiple architectures. For example, high-level software abstractions tend to cause fewer
incompatible behaviours when compared to memory allocators and data structures that
make assumptions about size, alignment, and binary representation of a pointer.

We provide two estimates for the cost of porting web software stacks to CHERI. First, the
total number of staff-hours invested in the porting effort for this project. And second, the
number of lines of code (SLoC) that have been changed as a result of the porting work. The
former provides a direct measure of the effort. The latter metric provides an indication of the
disruption to the code base, this is important for the integration of changes to the upstream
project and acts as a proxy measure of the complexity of the changes. We also consider
qualitative aspects of the porting experience.

Approximately 1.7 million lines of code are ported to memory safe CHERI C/C++ in the
project with a total effort approaching 4 staff months (this is a conservative estimate of effort
as it includes our compartmentalisation work and writing of engineering reports). Estimates

5 DB-Engines Ranking. DB-Engines. Retrieved March 14, 2024 from
https://db-engines.com/en/ranking
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of programmer productivity can be somewhat contentious, but if we assume an optimistic
value of a few tens of thousands of lines of code per year (20-35k LoC) it is clear that porting
to CHERI C/C++ offers the potential for a very significant productivity benefit. That is not to
say that new code shouldn’t be written in a memory safe language such as Rust. But CHERI
can provide significant memory safety guarantees for existing C/C++ code at a fraction of the
cost of fully rewriting the whole code base, complementing existing memory-safe languages.
Within this pilot project the measured porting effort for server side software appears to be
consistent with results reported for porting other software.

The number of lines of code changed is measured for each repository using the open source
cloc6 tool. In all cases, we compare our changes with respect to the unmodified code base.
It should be noted that the number of SLoC (source lines of code) changes reported here
include test code. This is intentional because in some cases tests have broken due to
behavioural differences in the ported code. These behavioural differences are particularly
interesting to analyse and are described in the following sections. Furthermore, changes to
test code should be considered part of the code-base evaluation because they contribute to
the adoption and maintenance friction from CHERI C/C++ features.

The percentage of lines that required changes to adapt the software to the pure-capability
CheriABI is minimal. In fact, the number of lines affected by changes sits below 1% in most
cases. The figure below shows the number of lines affected by CHERI changes for each
source code repository. The table below further differentiates the amount of changes that
occurred within the project main software artefacts and the test suites.

Limitations
It should be noted that we had no prior experience or familiarity with the ported code bases
prior to the project. Therefore, this estimate of total person hours also includes effort to
understand the code bases and the impact of potential changes. Our qualitative assessment
of the porting effort suggests that some additional familiarity with the code bases would have
been beneficial to reduce the engineering effort required. However, in contrast, our team’s
significant experience with porting a wide variety of other software to CHERI provides
productivity gains that may be absent in measurements taken by other third parties.

The SLoC changed percentage measurements reported in this document have the following
limitations:

1. The Morello ports of the aforementioned software are functional but have different
degrees of maturity. In particular, issues around CHERI capability representability are
known to arise at run-time and (so far) can only be detected during testing. The test
suites integrated in the software we ported may not exercise enough functionality to
catch all CHERI run-time violations.

2. Some of the ported software components contain dedicated memory allocators.
These must be modified to properly enforce capability bounds and representability
alignment in order to obtain the full benefits of CHERI spatial memory protection.
This is left to future work.

6 Cloc: Cloc counts blank lines, comment lines, and physical lines of source code in many
programming languages. https://github.com/AlDanial/cloc
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3. We did not test any of the code bases with sub-object bounds enforcement modes.
The security impact of sub-object bounds on the software components ported here is
also unclear. This is left for future work.

Figure - SLoC changes across projects
This chart shows the number of Source Lines of Code (SLoC) that have been changed as a result of

CHERI/Morello support. The chart on the left shows the absolute number of lines that have been affected by
changes, while a relative measure of the changes is shown on the right. Because we consider added lines,care
should be taken when interpreting the percentage of lines changed. The number of changes here is normalised

with respect to the total number of lines of code in the baseline project, however it is conceptually possible to
obtain % changes > 100. This would indicate that collectively the size of the changes exceeds the original size of

the source code.

Project
Total
SLoC

Changed
SLoC

% Changed
SLoC

Total files Changed
files

% Changed
files

abseil-cpp tests 72659 15 0.02 200 3 1.50

abseil-cpp w/o tests 76972 265 0.30 454 15 3.30

grpc tests 165016 32 0.02 830 12 1.40

grpc w/o tests 165102 94 0.10 1350 19 1.40

nginx w/o tests 139804 118 0.10 337 20 5.90

postgres tests 77768 9 0.01 330 4 1.20

postgres w/o tests 872342 651 0.10 2036 33 1.60
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Project
Total
SLoC

Changed
SLoC

% Changed
SLoC

Total files Changed
files

% Changed
files

protobuf tests 47858 31 0.10 99 3 3.00

protobuf w/o tests 102931 133 0.10 355 10 2.80

upb tests 1353 0 0.00 3 0 0.00

upb w/o tests 15421 191 1.20 44 9 20.50

Total 1737226 1539 0.09 6038 128 2.12

Qualitative evaluation
This section outlines a number of interesting qualitative observations we have made during
the porting work. Many of the source code changes are fairly straightforward and stem from
well-known patterns and behaviours that are known to not translate cleanly to CHERI. For
instance, the Protobuf library was fairly straightforward to port, having only minor issues due
to the assumption that a maximum alignment to 8-bytes was sufficient for all architectures.
The remainder of this section details portability issues and lessons learned that are
particularly interesting or can not easily be categorised as a common CHERI portability issue
(such as those covered by guidance in the CHERI C/C++ Programming Guide7). In general,
we observe that server software does not seem to be different from other desktop software
in terms of common CHERI portability issues discovered. In particular, support for multiple
architectures and proper use of portable data types have been confirmed to be beneficial to
the porting effort in this project.

Abseil
The Abseil C++ library provides common abstractions (for example, the
absl::string_view type defines a common interface to handle reading string data),
some of which have been incorporated into or are API compatible with the C++11, C++14
and C++17 standards. The library is maintained by Google and it is used by a number of
internal and public Google projects. Abseil is a fairly large C++ code base (77k LoC), which
is compiled into a number of component libraries (much like other C++ utility libraries such
as Boost). In the context of our Morello web software stack, it is used as a dependency of
the Google gRPC library. The majority of this code base is not affected by any portability
issues, however we found a few cases in which Abseil makes assumptions about pointer
size and representation that require changes. Furthermore, we discovered a possible
platform bug involving access to the AArch64 cntfrq_el0 register on Morello.

Cord optimizations
In the Abseil C++ library, a "cord" is a data structure that represents a sequence of bytes. It
is similar to a string in that it represents a sequence of characters, but it is optimised for
efficient concatenation and substring operations. Unlike a traditional string, a cord is

7 Robert N. M. Watson, Alexander Richardson, Brooks Davis, John Baldwin, David Chisnall, Jessica
Clarke, Nathaniel Filardo, Simon W. Moore, Edward Napierala, Peter Sewell, Peter G. Neumann.
CHERI C/C++ Programming Guide. Technical Report UCAM- CL-TR-947, University of Cambridge,
Computer Laboratory, June 2020. Retrieved March 14, 2024 from
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
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implemented as a tree of small strings, where each leaf node represents a short (usually
less than 256 bytes) substring, and internal nodes represent concatenations of their child
nodes. This allows cords to be concatenated efficiently without the need to allocate a new
buffer and copy data as only the tree structure needs to be updated. Cords are commonly
used in performance-critical applications where string manipulation is a bottleneck, such as
text processing, networking, and data serialisation. Abseil's cord library provides a rich set of
operations for manipulating cords, including substring extraction, search, and transformation
functions, as well as support for conversion to and from other string types.

The Abseil Cord implementation assumes that the sizeof(intptr_t) == 8 (for 64-bit
architectures). Furthermore, the Cord small-string representation stores a pointer in
big-endian order, assuming that the pointer representation will be the same as an unsigned
integer. These assumptions do not hold on Morello and lead to the following consequences
for the Morello adaptation:

1. Some data types must be changed to use uintptr_t in place of uint64_t. Misuse
of an integer type for a variable that is meant to hold a pointer is a common portability
issue for CHERI C/C++.

2. Constants that assume sizeof(uintptr_t) == 8 must be updated for portability.
3. The size of the Cord inline representation as well as the maximum inlined string size

are dependent on the pointer size. This means that on Morello there is a behavioural
difference in the Cord implementation because it will be possible to inline longer
strings. In order to minimise behavioural differences, we opted to maintain the same
inline string size, despite using twice the space for the inline representation.

4. When the string represented by the Cord structure is not inlined, the inline data
space holds two pointers. One pointer is used for the actual string buffer allocation;
the other points to a CordzInfo object which tracks Cord statistics for profiling. The
CordzInfo pointer is stored as a big-endian uint64_t value in order to ensure that
the low pointer byte aliases with the last byte of the inlined string data. This is no
longer possible on Morello, therefore instead the pointer is stored separately after the
inline string data buffer; moreover the low pointer bits can still be used to hold the
required bit flag. This solution was deemed to balance source code disruption and
portability.

The Cord InlineData object members change slightly as shown in the following snippet.

+#if defined(__CHERI_PURE_CAPABILITY__)
+ union {
+ struct {
+ char as_chars_[kMaxInline + 1];
+ cordz_info_t cordz_info_;
+ };
+ AsTree as_tree_;
+ };
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+#else
union {

char as_chars_[kMaxInline + 1];
AsTree as_tree_;

};
+#endif

The as_chars_ buffer holds the inlined string representation, which is implicitly aliased with
the CordzInfo pointer in big-endian encoding. The cordz_info_ member of this implicit
union becomes explicit on Morello. This is done to properly account for the pointer field
without assumptions about its encoding. The original implementation uses a bit flag, stored
as the least significant bit of the CordzInfo pointer, to signal whether the string is inlined or
not. This is permitted by CHERI and the existing code already guarantees that the
CordzInfo object is sufficiently aligned, therefore the flag is maintained in the least
significant bit of the address in the cordz_info_ capability.

The technical implementation of the Morello-compatible Cord is not complex. It is, however,
a good example of how assumptions about the shape and size of a pointer can quickly
cause cascading changes to the source code. In this instance, we attempted to avoid
behavioural changes due to the changing size of the Cord inline string buffer; other
implementations with different tradeoffs are possible. Nevertheless, the assumptions on the
size of a Cord were widespread enough in the Abseil string library that it required changes
to many other places, including an optimised copy routine tailored to copying two 64-bit
words.

Cords are likely to be used in performance sensitive environments, as a result it is possible
that the growth of the Cord will have an effect on some workloads. The trade-off between
Cord structure size growth and the effect of additional space in the inline string buffer is not
straightforward to characterise. In particular, it is not known whether the original inline string
buffer size was chosen deliberately at an inflection point where increasing the size leads to
diminishing returns, or whether the sizing derives from the width of 2 pointers on common
64-bit architectures. A thorough performance evaluation of the Cord performance is outside
of the scope of this project.

The cntfrq_el0 register
The Armv8-A architecture specification, upon which the Morello CPU is based, includes the
cntfrq_el0 register, which is used to allow unprivileged software to discover the frequency of
the system counter. Abseil uses this register as part of its time abstraction interface. While
access for the register is configured correctly by the system, it was discovered that Morello
requires the current PCC (Program Counter Capability) to grant the System permission. This
permission is used to enable access to a wide range of system registers and, in CheriBSD, it
is never granted to user programs. The requirement of the System permission to access an
EL0 register is, in our opinion, a platform bug that should be fixed in future architectures.
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Within the scope of this project, we modified the CheriBSD Arm timer driver to provide
emulation for user accesses of cntfrq_el0.

Mutex implementations
Abseil includes a synchronisation library with mutexes and atomic operations. Mutex
implementations tend to cause portability issues in the presence of CHERI because in some
cases pointer provenance is not preserved correctly. In particular, mutex implementations
tend to use a number of the least significant bits of its pointer value to store flags. These
flags maintain information on the state of the mutex and are managed with bitwise
operations. While these bitwise operations on pointer types are normally commutative, in the
presence of CHERI the propagation of pointer provenance is not commutative. In particular,
the compiler currently makes a pragmatic choice for compatibility and uses the first operand
as the source of pointer provenance.

Consider the following snippet of code showing a simplified part of Abseil mutex code.

PerThreadSync h;

intptr_t nv = (v & kMuEvent) | kMuDesig;

/*

* This is perfectly legal in C++ and fairly clear code.

* With CHERI it has the subtle effect of propagating provenance

* from nv, instead of thread_pointer, leading to tag loss.

*/

nv |= kMuWait | reinterpret_cast<intptr_t>(h);

Here, the nv variable is used to construct the new value for the mutex. The variable h holds
a pointer to some per-thread state for the thread owning the mutex. Note that nv is initialised
from some value v previously read from the mutex. Regardless of whether v is a pointer or
not, nv holds a combination of flags because of the bitwise masking operation. When nv is
OR-ed with the pointer in h, the provenance will not be propagated from h. Instead, nv is
used as the source of provenance for the bitwise OR operation. This occurs because the
compiler can not unambiguously determine at compile time which intptr_t is the intended
source of provenance, therefore the heuristic of using the first operand kicks in and results in
propagating provenance from the NULL-derived capability in nv.

The confusion between pointer flags and provenance-carrying values, as well as the
operand ordering for intptr_t arithmetic are resolved in the Morello port. The following
snippet shows how the nv assignment explicitly casts non pointer-bearing values to the
appropriate integer type in order to avoid confusion.
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/*
* Note how nv is now cast to ptraddr_t to ensure that only
* h carries the provenance. In this case the order of the operands
* does not matter.
*/
nv = reinterpret_cast<intptr_t>(h) | static_cast<ptraddr_t>(nv) |

kMuWait;

It should be noted that the problem of provenance loss, especially around mutex code, is
well-known and has been explored in the context of the CheriBSD kernel synchronisation
primitives, as well as other libraries. In general, there is no universal solution to fix the
confusion regarding the source of provenance that arises from intptr_t arithmetic. The
current behaviour of the compiler to generate warnings and use the first operand as the
default source of provenance is considered sufficient to allow fixing these issues during
porting effort.

Limitations
The Abseil Morello port is mature enough to be functional, however there are some
limitations of this work that mainly arise from time constraints. These involve both incomplete
support for some Abseil functionalities, as well as CHERI-specific concerns. First, there are
some known unit-test failures that need to be addressed to complete the porting effort.
These involve some features that are not commonly used and indeed are not critical for
gRPC. Secondly, the outstanding CHERI-specific issues need addressing including the
following:

1. Support for CHERI specific format strings in absl::StrFormat.
2. Adding bounds enforcement in the internal allocator interface.

A complete evaluation of the internal allocator interface is particularly important because
bounds must be explicitly narrowed by allocator interfaces in order to enforce spatial
memory safety among allocations. This is left as future work.

gRPC
The gRPC framework is a modern high-performance language-agnostic remote procedure
call (RPC) protocol implementation. gRPC provides efficient, high-performance
communication across multi-language environments for both synchronous and
asynchronous messaging and streaming of data supporting interoperable machine- or
application- oriented interaction over a network. The gRPC framework uses HTTP2 as a
transport and Protocol Buffers (or protobufs) for its interface definition language. Taking
advantage of the cross-language portability of the protocol buffers binary format, it is
possible to easily interoperate between clients and services in a variety of programming
languages, however, this project focuses on the C++ gRPC library implementation.

The gRPC framework operates with a server and a client. Both the server and client code
stubs are generated by the protoc compiler from the protobuf interface definition files. The
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server exposes a number of gRPC services to its clients and each service defines a number
of RPC endpoints that can be invoked by clients. The gRPC code base consists of a core
library written in a mix of C and C++, alongside the implementation of language-specific
bindings. In addition, gRPC depends on a number of external libraries that are also required
to be ported to Morello. In particular, the Protobuf library/framework for message
serialisation, as well as the internal µpb (micro protobuf) implementation, have necessitated
some changes due to assumptions about pointer sizes and alignment requirements.

The gRPC framework itself did not require extensive adaptations to Morello. We have
encountered a small number of instances where intptr_t has been misused to store
integers that are unrelated to the pointer size, such as sequential identifiers, which should
use size_t, intmax_t or a fixed-width integer type if a minimum width is required (this is
common issue in code originating from Google). Furthermore, there have been a number of
cases where we explicitly introduced casts to remove ambiguity about provenance in
intptr_t arithmetic operations. This is another common CHERI-related portability problem
that has emerged in Abseil as well.

Overall, the gRPC port has shown lower friction than other software projects such as the
Abseil library. We believe that this can be attributed to the fact that lower-level abstractions
and optimizations are delegated to its dependencies, while the gRPC code base does not
make many assumptions about pointer size, alignment and binary representation.

MySQL Server
The Morello software ecosystem currently lacks an up-to-date and high-quality port of a
production database, therefore we sought to address that gap in the project by porting
MySQL server (version 8.0). As a precondition for the port, various runtime dependencies
first needed to be ported to Morello. The most significant engineering effort required in
porting dependencies was required by Protobuf (a framework for serialisation of structured
data). The upstream Protobuf implementation only supports architectures with a maximum
alignment of 8-bytes, and therefore the majority of the changes made to Protobuf introduce
support for stronger alignment (to max_align_t) as shown below8. In addition it was
necessary to work around a missing ostream<< operator in the platform’s standard C++
library for printing intptr_r/unitptr_t types; this issue has subsequently been resolved
in CheriBSD 23.11.

#if defined(__CHERI_PURE_CAPABILITY__)

struct alignas(max_align_t) TcParseTableBase {

#else

struct alignas(uint64_t) TcParseTableBase {

#endif

8 Protobuf@f98f86d. Retrieved March 14, 2024 from
https://github.com/CTSRD-CHERI/protobuf/commit/f98f86d2659e5ad34b0d82773b560827f4eeded5
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During the porting of MySQL server undefined behaviour (that is, behaviour where the
compiler is free to do whatever it chooses) was identified when configuring options. For
example, the configuration options for SSL (TLS) that configure the file containing the
certification authority certificate:

static Sys_var_charptr Sys_ssl_ca(
"ssl_ca", "CA file in PEM format (check OpenSSL docs, implies --ssl)",
PERSIST_AS_READONLY GLOBAL_VAR(opt_ssl_ca),
CMD_LINE(REQUIRED_ARG, OPT_SSL_CA), IN_FS_CHARSET, DEFAULT(nullptr),
&lock_ssl_ctx);

The Sys_var_charptr type used to store the configuration option is a C++ class,
sub-classed from the sys_var type (declared in set_var.h). The sys_var class is used
to set configuration variables that both affect SQL sessions (stored in a System_variable
structure), and global variables such as those to configure SSL (TLS) settings. In a flawed
attempt to to handle both of these cases with the same code, the sys_var type stores an
offset (of type ptrdiff_t) to the configuration variable. For configuration options that affect
the sessions, this is valid as the offset is within the same data structure. However, for global
variables the offset used is from an arbitrary and unrelated address in memory. For example,
in the case of the Sys_ssl_ca configuration parameter the offset to the configuration
variable is computed using the GLOBAL_VAR macro shown below:

#define GLOBAL_VAR(X) \
sys_var::GLOBAL, (((const char *)&(X)) - (char *)&global_system_variables), \
sizeof(X)

Computing values using the difference of two unrelated pointers (that is pointers not within
the same data structure) results in undefined behaviour in C. In this instance, when
accessing a global configuration variable its address must be recomputed by adding its
offset to the address of the global_system_variables. As CHERI capabilities cannot be
calculated by arbitrary arithmetic operations this invalidates the capability tag, which results
in a CHERI protection fault on dereferencing the capability.

Removing the identified undefined behaviour from MySQL requires substantial changes to
the configuration option handling code. After some effort, attempts to work around the issue
did eventually allow progress to be made. However at this point a further issue was identified
with data representations across layers in the database, and it was felt that the port of
MySQL server was likely to remain a high-friction activity and uncontainable within the
budget and timescales of the existing project. Therefore, it was decided (in agreement with
the technical authority at DSTL) to pivot to the database porting activity to Postgres; as an
earlier port of Postgres had been performed at the University of Cambridge the risk of this
was believed to be lower. However, the selection of easier, low-friction SW for porting
potentially biases the quantitative evaluation work potentially producing an overly optimistic
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estimate of the man hours required to adapt software to CHERI C/C++. We are keen to
explore issues around SW selection and its impact on porting effort in further detail in future
studies.

Postgres
The existing CHERI port of Postgres (created by Alex Richardson at the University of
Cambridge) is both significantly out-of-date (version 9.6 which is now unsupported) and was
performed with an obsolete CHERI C/C++ interpretation of capabilities as offsets from a
base rather than addresses, which resulted in a large number of changes that are no longer
necessary (for further details see ‘Complete spatial safety for C and C++ using CHERI
capabilities’9). Therefore, it was decided to start from scratch with a new port of Postgres 15
beta 4, matching the version found in the CheriBSD 23.11 ports collection.

One of the changes made previously that is also required for the new port is modification of
the Postgres quicksort implementation to preserve capability tags (specifically in the case
where the input to the sort is an array of capabilities to the objects that are to be sorted). The
quicksort implementation found in PostgreSQL is based on the design described by Bentley
and McIlroy in their paper “Engineering of Sort Function”.10 This design is also found in other
software components that have been ported to CHERI C/C++ such as in glib and Redis, and
it is also found in CheriBSD libc. As the CheriBSD libc quicksort has already been
successfully modified to preserve capability tags, this version can be easily substituted for
the version provided by Postgres. However, the sort comparator API differs between the two
implementations resulting in the requirement to adapt each of the sorting comparator
functions in Postgres. Since Postgres 9.6, several new implementations of sorting algorithms
have been introduced, including a new “interruptible” quicksort (that is, the sort can be
stopped at set checkpoints) and a partial quicksort. Given the proliferation of sort algorithms,
breaking the sort comparator API has become highly disruptive requiring numerous changes
across the code base. However, the CheriBSD qsort_s implementation does match the
comparator API used by Postgres. Thus our new Postgres 15 beta 4 port replaces the
internal qsort with qsort_s in CheriBSD’s libc.

Adapting the new interruptible quicksort to preserve capability tags is more problematic. The
interruptible qsort is created by instantiating a templated algorithm implemented with
preprocessor macros. Although adapting the templated qsort is possible, a pragmatic
approach (requiring less effort) was taken where the templated sort is instantiated for each
different type where capability tags need to be preserved. This change may need revisiting
when looking to make the project’s outputs available to the wider Morello community.

10 Jon L. Bentley M. Douglas Mc ILROY. Engineering a Sort Function. Fit.edu. Retrieved March 14,
2024 from https://cs.fit.edu/~pkc/classes/writing/papers/bentley93engineering.pdf

9 Alexander Richardson. Complete spatial safety for C and C++ using CHERI capabilities. Technical
Report UCAM- CL-TR-949, University of Cambridge, Computer Laboratory, June 2020. Retrieved
March 14, 2024 from: https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-949.pdf
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Unset

Given the recurrence of issues with preserving capabilities in sort algorithms, common
advice should be added to the CHERI C/C++ Programming Guide11 to prevent repeated
re-engineering.

The Datum type (defined as uintptr_t) is used internally in Postgres for representing any
valid SQL type. Increasing the Datum size, which has doubled in size in the CHERI C/C++
port, is likely to have a significant impact on performance and memory utilisation of Postgres.
However, evaluation of those impacts and exploration of potential optimisations minimising
their impact is beyond the scope of the existing project.

Executing the Postgres test suite shows a number of tests where the query plan differs in the
Morello port from its expected value. For example, in the example shown below the query
plan favours a performing sequential scan (Seq Scan) of the database over constructing
and using an index that does not reference the table’s main data area (Index Only).
Determining the query plan uses a set of heuristics that are themselves dependent on the
performance of the platform, for example, the time to perform either a sequential or random
page read. Therefore, it is possible that any differences in query plans are simply the result
of a legitimate behavioural change. However, such differences could also simply result from
a bug introduced by our porting. Within the budget and time constraints of the project it has
not been possible to investigate all of the changes to the query plans (5 in total) witnessed in
the Postgres test suite. However, we have looked in some detail at the example shown
below and present the findings here.

Conflict Filter: (SubPlan 1)
-> Result
SubPlan 1

- -> Index Only Scan using both_index_expr_key on insertconflicttest ii
- Index Cond: (key = excluded.key)
+ -> Seq Scan on insertconflicttest ii

+ Filter: (key = excluded.key)

To analyse the differences, the output from the heuristics used to construct the query plan on
Morello was compared to a build of Postgres running on MacOS. This showed that the
estimated costs of performing an Index Only scan were identical in both builds but that the
cost of a Seq Scan was estimated as being lower on Morello. Furthermore, the small
difference in the cost of Seq Scan on Morello was sufficient to favour this over an Index
Only scan. On Morello the estimated cost of performing a Seq Scan is lower as a result of
the tuple density being lower; a Postgres tuple corresponds to a row within the database and
the tuple density being the number of tuples per block/page (where block/pages are 8kB
subdivisions of physical table storage). Each Postgres tuple is aligned to the value

11 Robert N. M. Watson, Alexander Richardson, Brooks Davis, John Baldwin, David Chisnall, Jessica
Clarke, Nathaniel Filardo, Simon W. Moore, Edward Napierala, Peter Sewell, Peter G. Neumann.
CHERI C/C++ Programming Guide. Technical Report UCAM- CL-TR-947, University of Cambridge,
Computer Laboratory, June 2020. Retrieved March 14, 2024 from
https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-947.pdf
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MAXALIGN. As CHERI capabilities require a stronger maximum alignment, this results in a
higher value of HEAP_OVERHEAD_BYTES_PER_TUPLE, which in turn results in the lower
tuple density and lower estimate for the Seq Scan. Whilst this analysis may not be
generalisable to the other case where the query plans differ, it does suggest that they are
most likely legitimate behavioural changes resulting from changes to heuristics used for
query planning. It should be noted that in this example the test case itself is fragile as the
test outcome is perturbed by minor changes to the heuristics from the platform’s stronger
alignment requirements.

The Postgres regression test suite currently shows one unresolved crash when processing
indirect toasts. A toast is a large blob of data managed outside the database row, and
indirect toast is one in which the memory for the data blob is managed independently of
Postgres. In the test indirect toasts are referenced from the database tuple with a
pointer/capability. However as this value isn’t guaranteed to be correctly aligned,
dereferencing results in a CHERI protection fault. As this is a very minor feature we have not
undertaken a fix for this, although it is thought to be relatively straightforward.

4. Library compartmentalisation
One of the main results of this work is the first exploratory analysis of the implications of
CHERI/Morello compartmentalisation models for web software stacks. For the purposes of
this analysis, we focused on the library compartmentalisation model prototype, which aims to
provide the ability to enforce isolation boundaries at the shared library granularity. We
hypothesise that library compartmentalisation provides a good trade-off between ease of
adoption, flexibility of bounds enforcement, performance and security guarantees. It should
be noted that a complete in-depth analysis of this trade-off space offered by library
compartmentalisation is impossible at this point. This is because the compartmentalisation
infrastructure is in its early stages of development and this project has been its first
“real-world” consumer. Nevertheless, it has been possible to provide valuable early insight
and feedback that has driven further development and refinement of the library
compartmentalisation model.

Library compartmentalisation and C++
The existing work on library compartmentalisation has so far focused on C applications,
along with the C standard library and run-time infrastructure. One of this project’s main
contributions consists of the first test and characterization of the existing library
compartmentalisation model for C++ libraries and applications. In particular, both gRPC and
Abseil exercise a significant portion of the C++ run-time and standard libraries.

It is possible to identify two main areas in which this work has improved our support and
understanding of the library compartmentalisation model for C++:

1. Several bug fixes and improvements to the domain transition trampolines have been
motivated by failures triggered by gRPC.
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2. gRPC demo services and test workloads provide exploratory data to understand the
interactions of C++ language features, such as lambda functions and virtual
inheritance, with the library compartmentalisation approach.

The gRPC demonstrator has shown that it is possible to run C++ applications under library
compartmentalisation with minimal effort, however it has raised a number of questions about
how the compartmentalisation boundary interacts with C++ features. As previously
introduced in the Background section, the current library compartmentalisation model relies
on the run-time linker to generate domain transition trampolines that intercept cross-library
function calls via the ELF PLT (Procedure Linkage Table). While this mechanism works for
both C and C++, it has a known limitation when function pointers are shared across libraries
and called directly bypassing the PLT. Recent C++ specifications introduce support for
lambda functions and the std::function abstraction of function pointers. These are
expected to suffer from the same limitation as raw function pointers with respect to domain
transitions. Moreover, depending on lambda capture and implementation details, it is unclear
whether it may be possible that some state is unexpectedly leaked to another compartment.

The handling of C++ exceptions across library compartments is not yet supported, however
this is not considered to be a fundamental limitation of the model and will eventually be
implemented.

Finally, C++ class method calls across compartment (library) boundaries require some
consideration. As an example, assume that a class B in the main program inherits from class
A which is part of a library. Consider now the call of a method of class B from the main
program compartment. Methods defined by A will be called normally through the PLT,
regardless whether these are virtual or not. Methods defined in B will not cause any domain
transition. Furthermore, the class data layout on AArch64 is such that both the main program
and the library will have access to all public and private members of the class, regardless of
whether the member is inherited from A or declared in B. As a result, we believe that the use
of C++ classes across compartment boundaries should be assessed carefully to ensure that
the application is not accidentally leaking state into a library compartment through shared
object instances.

Limitations
Exploratory work on library compartmentalisation with C++ is currently limited to the gRPC
demonstrator, therefore there are clear limitations on the generality of our observations.
Nevertheless, this is an important step towards improving the library compartmentalisation
model maturity for C++ applications, as well as exploring the ways in which compartment
boundaries can be defined effectively.

nginx compartmentalisation
Since version 1.9.11, nginx supports dynamic modules compiled as shared libraries. nginx’s
first party modules encompass core functions such as handling the mail and streaming
protocols as well as a variety of other functions from profiling to geolocation of IP addresses,
in addition there are many third-party modules. As nginx modules encapsulate a well-defined
and distinct set of responsibilities, such as decompression or authorization, they present a
natural isolation boundary based on subject matter that can be enforced by library
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compartmentalisation. Whilst several first party nginx modules can be built as dynamic
libraries, the core nginx modules such as protocol state machines for http currently can not
(largely because up to this point there has been no motivation to do so). However, this is not
a fundamental limitation and could be resolved with some small additional engineering effort
(though this effort was not containable within the scope of this project).

Library compartmentalisation was successfully applied to nginx by modifying the binary’s
runtime linker as described in the CheriBSD c18n man page. Although adoption of library
compartmentalisation is extremely straightforward it remains unclear what this achieves for
security or how it impacts performance. Therefore Sections 5 and 6 present an initial
analysis of performance and security for nginx with library compartmentalisation. In our
security analysis of nginx we assume that compartmentalisation of core modules such as
http state machines is present, but other than that there are no further attempts to modify or
adjust existing library boundaries. In our performance analysis no attempt is made to actually
compartmentalise the http protocol state machine though other supporting libraries for
example for cryptography are compartmentalised.

gRPC compartmentalisation
Our exploration of compartmentalisation opportunities for gRPC applications focuses on two
aspects of the library compartmentalisation model. First, we want to assess the feasibility of
using library compartmentalisation to isolate all libraries in an existing gRPC application.
Second, we explore a technique that allows us to enforce CHERI compartment boundaries
around gRPC services running within the same server. Both these experiments have allowed
us to provide feedback for the development of library compartmentalisation in multiple
co-design cycles.

In order to simplify our understanding of library compartmentalisation with gRPC, we
considered a simple service that responds to ping requests. This demonstrator server
program links a total of 64 libraries, including the gRPC core and C++ libraries, a number of
Abseil component libraries and an SSL library. Each of these libraries becomes a separate
compartment.

This first experiment confirmed that no disruption to the source code was needed to enable
library compartmentalisation. This is one of the key advantages of this model, although it
remains important to evaluate the security implications.

Early results from compartment transition tracing has revealed that there are various
opportunities for optimization.

1. A relatively large number of the domain transitions are caused by system functions in
libthr and libc, such as memset() and memcpy(). Some of these functions do
not access any state in the respective library, these are either pure functions or
operate only on a state object provided as one of the arguments. We hypothesise
that such functions may be executed without a domain transition by incurring in
minimal or no loss of security guarantees.

2. As previously mentioned, a simple gRPC service links a large number of libraries. We
observe that the library boundary sometimes does not coincide with the desired
compartment boundary. For example, 45 out of 64 libraries linked by our gRPC demo
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program are Abseil components. We argue that it makes little sense to isolate all
Abseil components from each other, because multiple shared libraries make up one
logical compartment.

As a result of these two observations, the compartmentalisation run-time linker has been
extended to provide a few important features. First, there is initial support to group libraries
into compartments by specifying a policy. Second, libraries that are part of the TCB (Trusted
Computing Base), such as libc and libthr are automatically grouped. Finally, a number
of well-known pure functions, such as memcpy(), are executed in the context of the calling
compartment, without a domain transition. These changes initially made to in an
experimental version of CheriBSD are available in the 23.11 release,

Initial observations from compartment transition traces suggest that there are substantial
gains to be obtained by optimising the grouping of libraries in logical compartments, as well
as identifying functions that do not necessitate a domain transition. In our simple ping
demonstrator program, the optimisations stated above reduce the number of domain
transitions by approximately 78%, from about 490,000 to just below 105,000 (these
preliminary results were recorded without the Benchmark ABI). The same set of
optimisations have a lesser effect on the QPS benchmark ping-pong unauthenticated
streaming workload, where we observe a 40% reduction in the number of domain transitions.

Library compartmentalisation policies allow to group multiple libraries into a single logical
compartment. This is a technique useful to tune the trade-off between security and number
of domain transitions. In this case the shared library granularity for compartments allows to
create a meaningful logical compartment boundary. It is interesting to discuss the opposite
situation, where a single program or library must be split in order to isolate one of its
components. In the context of gRPC, we argue that the service abstraction provides a good
example of how it may be possible to leverage library compartmentalisation to isolate
different API surfaces. Consider for example a gRPC server that exposes two services,
depicted in the figure below. The chat service manages less sensitive information, while the
payments service handles the exchange of money between users. It is desirable to limit
access to the libraries and interfaces used for financial transactions to only the payments
service.
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Figure - Use of library compartmentalisation for custom isolation boundaries
Here the main compartment of a gRPC server application is split into two separate compartments. This is

possible with minor source code disruption because the gRPC services interface allows to build each service as
a separate shared library.

In the first configuration, the chat and payments gRPC services are built within the main
application. It is relatively straightforward to separate the services implementation into two
separate libraries. In this way, the payments service may maintain exclusive access to
cryptographic material and API keys that allow financial operations, while any vulnerability in
the chat service has a reduced impact.

It is important to note that this approach does not require a major redesign of the application
and leverages the existing design and abstractions of gRPC. It is interesting to show that
library compartmentalisation provides opportunities for a more arbitrary definition of
compartment boundaries, however it is important to caution against overgeneralization.
Software compartmentalisation is a notoriously difficult task in general, due to performance,
source code disruption and maintenance trade-offs. The findings in this project suggest that
CHERI/Morello library compartmentalisation provides a new trade-off space to further
explore.

5. Performance Evaluation
Our memory safe experimental port of the nginx web-server (configured with HTTPs)
exhibits a modest 2% reduction in requests/sec compared to the baseline, non-memory safe
version. The performance overhead for our gRPC (a high-performance Remote Procedure
Call framework) port is more significant. The QPS throughput benchmark exhibits
approximately a 16% reduction in messages/sec for the insecure and SSL workloads, when
compared to the baseline non-memory safe version.

The performance of nginx and gRPC with library compartmentalisation degrades by about
2.5% and 12-14%, when compared to the memory-safe configuration. We show that
significant amounts of the performance overhead can be recovered by carefully optimising
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away domain transitions that do not significantly impact the security properties of the model.
This is implemented by a policy system that can be specified at the system level, as well as
optimised specifically for an application. When the policies are applied, the performance
overhead of library compartmentalisation is reduced to within 5-9% of the memory-safe
gRPC configuration.

Finally, we simulate a lower-bound overhead for an equivalent compartmentalisation model
built on top of process compartmentalisation. The simulated IPC yields an approximate
65-73% reduction in throughput on top of the memory-safety overhead for gRPC using
non-CHERI compartmentalisation. With a slightly smaller overhead of around 40% for nginx.
Further exploring the differences in nginx and gRPC with respect to the performance of
library compartmentalisation policy is outside the scope of the current project.

Performance of the Morello hardware prototype
Arm’s Morello processor, System-on-Chip, and board are experimental prototypes
developed on a shortened timescale as part of UKRI’s Digital Security by Design research
programme. Recent work on Morello performance12 has sought to isolate the fundamental
performance overheads of the CHERI protection model from the microarchitectural
limitations on performance introduced by the first-generation integration of the protection
model with the baseline Armv8.2-A architecture in Morello. That work has identified a
number of microarchitecture bottlenecks that significantly impact performance, for example,
untuned store throughput and buffer sizes for 128-bit capability values. To better isolate
performance measurements from such limitations of Morello, a set of ABI specifically for
performance measurements have been developed: Benchmarking, P128, and P128
Forced-Got compilation ABIs; these ABIs should only be used for performance
measurements as their code-generation weaken or remove the security properties of the
CHERI protection model.

This performance evaluation of nginx and gRPC uses the newly developed performance
evaluation ABI (referred to as Benchmark ABI), shipped in CheriBSD v23.11, in order to
provide a more accurate evaluation of the overhead of both memory protection and library
compartmentalisation. These benchmarks are expected to be near worst-case scenarios for
CHERI, because the selected message size is small and the workload should be dominated
by metadata processing, which is known to be sensitive to pointer size increase. However,
with the fundamental overheads of CHERI capabilities are estimated at around 1-2%, the
performance impact we see for nginx and gRPC are both significantly higher than might be
expected. It is therefore valuable to undertake more detailed performance work that can
seek to understand these results.

In the performance report, Arm and the University of Cambridge describe a series of
performance optimizations performed on a modified FPGA instantiation of the Morello
design, combined with the P128 ABIs, that achieve a 80%-88% reduction in CHERI
overheads compared to what is achievable on the shipped Morello board using the
Benchmark ABI. However, this modified design was not available for experimental work in

12 Early performance results from the prototype Morello microarchitecture. Github.io. Retrieved March
14, 2024 from https://ctsrd-cheri.github.io/morello-early-performance-results/cover/index.html
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the current version of our report. It is not possible to naively assume that the same overhead
reduction would be applicable to these workloads, but it is reasonable to presume that some
significant performance improvement would be achieved. Early performance results
presented in this section should be interpreted in this light. We hope that the workloads we
describe may be run on Arm’s modified FPGA implementation in the future.

nginx
The performance evaluation of the experimental nginx port uses the wrk benchmarking
command line tool13; replicating the performance setup used previously by F5 to benchmark
nginx14. The wrk tool is used to request a 1kb binary file (containing random bytes) from the
nginx server, a performance measurement is taken with a single thread and 50 concurrent
connections over a duration of five minutes, as shown below. The nginx configuration has
been tuned to achieve a representative level of performance, for example, disabling the
access log and logging only critical errors, and increasing the worker connections based on
the expected load. The wrk command line tool is on the same Morello board as the nginx
server, connecting via the localhost interface. For the duration of the performance
measurements the Morello box is performing no other user activities. The Morello board runs
a CheriBSD development kernel preview as the compartmentalisation (c18n) features are
experimental at this time.The CheriBSD version used for this benchmark run corresponds to
the git SHA c7c430099bbe.

./wrk -t 1 -c 50 -d 1m --latency https://192.168.2.2/rps/1kb-random.bin

In our setup, the wrk benchmark program is always compiled using the hybrid ABI, as the
focus of the benchmark is to measure server performance. Furthermore, there are two
patches applied to libcrypto and rtld. The former disables ARMv8 cryptographic
instructions for the hybrid ABI version of libcrypto; this is necessary because CheriBSD
doesn’t yet support such extensions for the pure-capability and benchmark ABIs. The latter
produces a variant of rtld where the IPC overhead emulation is always enabled; this is
necessary because the nginx process forks and the LD_C18N_COMPARTMENT_OVERHEAD
environment variable is not propagated.

The chart below shows the measured performance for four software configurations:

1. Purecap with memory safety - the project’s experimental port.
2. Purecap with memory safety and default library compartmentalisation policy. In this

configuration libraries that are part of the TCB (Trusted Computing Base), such as
libc and libthr are automatically grouped and a number of well-known pure

14 Amir Rawdat. 2017. Testing the performance of NGINX and NGINX Plus web servers. NGINX.
Retrieved March 14, 2024 from
https://www.nginx.com/blog/testing-the-performance-of-nginx-and-nginx-plus-web-servers/

13 Will Glozer. wrk: Modern HTTP benchmarking tool. Retrieved March 14, 2024 from
https://github.com/wg/wrk
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functions, such as memcpy(), are executed in the context of the calling
compartment, without a domain transition.

3. Purecap with memory safety and a fixed overhead approximating a lower-bound of
conventional IPC overhead (IPC overhead is emulated by a single syscall executed
in the domain transition and configured by the LD_C18N_COMPARTMENT_OVERHEAD
environmental variable).

Figure - WRK benchmark results over an encrypted connection.
This figure shows the absolute number of requests/sec obtained by statically serving a random 1KiB file. The
right Y axis shows the relative performance overhead with respect to the WRK benchmark built for the CHERI

hybrid ABI.

The project’s memory safe experimental port exhibits a ~2% reduction in requests/sec
compared to the baseline hybrid version running without memory safety. This can be
considered a negligible impact that falls within the expected overhead observed in other
CHERI-enabled applications evaluated using the Benchmark ABI.

During our co-design activity, we discovered that the initially unoptimised library
compartmentalisation significantly impacted nginx’s performance highlighting the importance
of exploring potential optimisation opportunities. To guide this analysis an experimental
tracing feature, logging entry and exit of each compartment using utrace, was added (at
our request) to the library compartmentalisation prototype. To enable the tracing set the
environmental variable LD_C18N_UTRACE_COMPARMENT=1, as shown below:

sudo LD_C18N_LIBRARY_PATH=/usr/local/lib LD_C18N_UTRACE_COMPARTMENT=1 ktrace -t
u /usr/local/nginx/sbin/nginx -c /usr/local/etc/nginx/nginx.conf

On analysing the collected traces, it was clear that many transitions occur into trusted
libraries such as libc and/or to pure functions (without side effects) such as memset or
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memcpy. Gao was able to use this collected trace data to develop a default policy that
reduces the overall number of compartment transitions and therefore improves performance
without introducing significant changes to the security properties provided by
compartmentalisation. In this policy the libc and libthread are considered part of the
Trusted Computing Base (TCB) and located in the same compartment. In addition, pure
functions such as memset are located in a global compartment and can be called without the
overhead of a compartment transition.

61645 nginx USER RTLD: c18n: enter libc.so.7 on thread 0x0 at [0] memset (0x40e141f9)
61645 nginx USER RTLD: c18n: leave libc.so.7 on thread 0x0 at [0] memset
61645 nginx USER RTLD: c18n: enter libc.so.7 on thread 0x0 at [0] readlink (0x40d7ebcd)
61645 nginx USER RTLD: c18n: leave libc.so.7 on thread 0x0 at [0] readlink
61645 nginx USER RTLD: c18n: enter libc.so.7 on thread 0x0 at [0] issetugid (0x40d7f311)
61645 nginx USER RTLD: c18n: leave libc.so.7 on thread 0x0 at [0] issetugid
61645 nginx USER RTLD: c18n: enter libc.so.7 on thread 0x0 at [0] getenv (0x40da7c1d)
61645 nginx USER RTLD: c18n: enter libc.so.7 on thread 0x0 at [0] strncmp (0x40e152f1)
61645 nginx USER RTLD: c18n: leave libc.so.7 on thread 0x0 at [0] strncmp
61645 nginx USER RTLD: c18n: enter libc.so.7 on thread 0x0 at [0] strncmp (0x40e152f1)
61645 nginx USER RTLD: c18n: leave libc.so.7 on thread 0x0 at [0] strncmp

Library compartmentalisation with the new default policy incurs approximately a 4%
performance decrease over the non-memory safety (baseline) version. This is significant
improvement for early optimisation work and suggests further work on optimisation may
produce further significant improvements.

Finally, we attempt to estimate the impact of a traditional process-based
compartmentalisation technology, which uses IPC for communication between
compartments. This is simulated by inserting a system call in the CHERI domain transition
trampolines, with the goal of measuring the cost of entering the kernel for the volume of
domain transitions that occur at the granularity level offered by the CHERI library
compartmentalisation model. In the case of this nginx workload, a traditional IPC mechanism
would impose at least 40% overhead with respect to the baseline, without memory safety. It
is important to highlight that the estimated overhead for a traditional IPC mechanism is a
strict lower bound. In fact, the cost of a real IPC implementation will always be higher than
our estimate, because we only consider the cost of transitioning to the kernel. In a real-world
implementation, there would be additional overhead to context switch to another process,
copy the data and handle synchronisation for the IPC channel.

gRPC
The performance evaluation of the gRPC port uses the QPS benchmark bundled with the
gRPC internal test suite. This benchmark is designed to run in a Google Kubernetes Engine
cluster in the Google Cloud infrastructure, however it is possible to run locally with a minimal
number of benchmark workers on the same Morello machine. The QPS benchmark
measures the messages/second rate combinations of workloads. Our evaluation focuses on
a throughput benchmark scenario that sets up 64 concurrent channels between the client
and the server and maintains a queue of 100 outstanding 8-bytes asynchronous streaming
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gRPC messages for the duration of the benchmark. This same scenario is tested both with
and without SSL for gRPC transport security. Each measurement is repeated 10 times.

Methodology
The QPS benchmark is implemented as a worker service qps_worker and a driver
qps_json_driver. The driver loads a JSON scenario file describing the benchmark to run.
We use two running instances of qps_worker, one will act as the gRPC server, the other as
the client. The benchmark is executed as shown below:

qps_worker --driver_port=10000 &
qps_worker --driver_port=10001 &
export QPS_WORKERS=localhost:10000,localhost:10001
qps_json_driver --scenarios_file /path/to/scenario.json

The scenario files are obtained from the scenario_config_exporter.py tool in the
gRPC project repository; the scenario files are unmodified. For the duration of the
benchmark, no other activity is running on the Morello board. The only active service is
sshd, which is used to connect to the board and run the benchmark script. The Morello
board runs a CheriBSD development kernel preview as the compartmentalisation (c18n)
features are experimental at this time. The CheriBSD version used for this benchmark run
corresponds to the git SHA c7c430099bbe.

Similarly to the nginx workload study, we disable cryptographic instructions acceleration for
all targets, so that there is no difference in libcrypto across the hybrid and benchmark
ABIs.

The benchmarks are used to measure the performance for six software configurations:

1. Hybrid without memory safety - baseline.
2. Purecap with memory safety - the project’s experimental port.
3. Purecap with memory safety and default library compartmentalisation policy. This is

the same policy described for nginx, which has been introduced as a result of the
co-design activity during this project.

4. Purecap with memory safety and application-specific compartmentalisation policy.
This policy extends the default compartmentalisation policy to address
application-specific needs (described below).

5. Purecap with memory safety and a fixed overhead approximating a lower-bound of
conventional IPC overhead (IPC overhead is emulated by a single syscall executed
in the domain transition and configured by the LD_C18N_COMPARTMENT_OVERHEAD
environmental variable).

Results
The charts below show a summary of the performance results from the QPS benchmark.
The first observation is that the memory-safety performance overhead is more significant
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compared to nginx. The QPS benchmark throughput exhibits a significant reduction of
around 16% for both the secure and insecure communication channels, compared to the
baseline without memory safety. In contrast, library compartmentalisation incurs a more
modest performance overhead on top of the memory-safety common overhead. The default
c18n compartmentalisation policy incurs an additional throughput overhead of about 15% for
the SSL case and 12% for the insecure case, on top of the memory safety overhead.

Figure - gRPC QPS benchmark results over an un-encrypted connection.
This figure shows the absolute number of messages/sec for the QPS 8-Byte message workload over an
unencrypted channel. The right Y axis shows the relative performance overhead with respect to the QPS

benchmark built for the CHERI hybrid ABI.

Figure - gRPC QPS benchmark results over an encrypted connection.
This figure shows the absolute number of messages/sec for the QPS 8-Byte message workload over an
unencrypted channel. The right Y axis shows the relative performance overhead with respect to the QPS

benchmark built for the CHERI hybrid ABI.
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The gRPC library links a relatively large number of libraries, which in the default
compartmentalisation policy are mapped 1:1 to CHERI compartments. Upon analysis of
domain transition traces, we noticed that it would be possible to group multiple libraries into
the same logical compartment, so that function calls between libraries within the same group
do not cause a domain transition. This is an extension of the default policy, which implicitly
creates a group with the core system libraries, currently including libc and libthr. We
created a new policy explicitly tailored for gRPC. This policy creates 4 additional library
groups:

1. A group containing all Abseil libraries. This is justified by the fact that these libraries
belong to the same software component and there is little security benefit in isolating
them from one another.

2. A group containing libssl and libcrypto.
3. A group containing all gRPC libraries. This includes the core grpc and C++

language-specific interface.
4. A group containing the core C++ run-time libraries, including libc++, libcxxrt

and libgcc_s.

The custom policy shows that it is possible to reduce the overhead to around 9% and 5% for
the secure and insecure QPS benchmarks respectively, on top of the memory-safe
prototype.

Figure - gRPC QPS benchmark results with overhead computed with respect to the memory-safe prototype.
The use of a custom compartmentalisation policy is effective at bringing the library compartmentalisation
overhead under 10%, while a traditional process compartmentalisation is estimated to surpass 65~70%

overhead.
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Figure - gRPC QPS benchmark results with overhead computed with respect to the memory-safe prototype.
The use of a custom compartmentalisation policy is effective at bringing the library compartmentalisation
overhead under 10%, while a traditional process compartmentalisation is estimated to surpass 65~70%

overhead.

Finally, it is important to note that the library compartmentalisation model enables a domain
transition rate that would not be possible with process-based compartmentalisation. In order
to estimate the cost of process-based compartmentalisation in this prototype, we show the
effect of a single (getpid) system call inserted in the domain transition trampoline. The goal
of this experiment is to show a lower-bound estimate of the cost of a process-compartment
switch, which would at least incur the cost of entering the kernel once for every domain
transition. The getpid system call is a good candidate for this, as it does not require any
synchronisation within the kernel and only introduces the system call overhead. As shown in
the figure above, the IPC overhead simulated in this way exhibits a 65% to 73% throughput
reduction compared to the memory-safe prototype, for the un-encrypted and encrypted
channels respectively.

The library compartmentalisation model is implemented on Morello using the
executive-restricted mechanism; when a library function is called, the CPU switches to
executive mode and executes the domain transition trampoline. The trampoline proceeds to
switch the compartment state and returns to restricted mode into the target library function.
By counting the number of transitions from restricted to executive mode, we obtain an
estimate of the number of compartment switches. In order to estimate the number of
compartment switches, we use the EXECUTIVE_ENTRY hardware performance counter
available on the Morello platform. This counter measures the number of transitions from the
restricted to executive modes that are speculatively executed.

There are three limitations of this approach:
1. The compartmentalisation trampolines are not the only cause for entering executive

mode. In particular, the run-time linker runs entirely in executive mode, therefore
whenever execution is transferred to rtld (e.g. for lazy symbol resolution) we will
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observe a mode switch to executive. The effect of these additional switches should
be insignificant for the benchmark steady-state.

2. The EXECUTIVE_ENTRY counter measures speculative events. This means that the
actual number of retired instructions that involve a mode switch may be lower than
the amount reported.

3. Due to implementation limitations, the EXECUTIVE_ENTRY counter is not meaningful
when using the Benchmark ABI. We use measurements from the pure-capability
QPS variant to measure the counter. This should not significantly affect the number
of transitions per message, because the number of compartment switches should
primarily depend on the amount of library function calls performed by the software.
We do not expect this to change between the QPS benchmark variations under test.

The QPS benchmark over an insecure channel performs an estimated 900 domain
transitions per RPC message exchanged. These correspond to around 450 function calls, as
the EXECUTIVE_ENTRY counter accounts for both the forward and return edges of the call.
The use of a custom compartmentalisation policy saves around 200 ex_entry/msg.

The same workload over a secure channel performs approximately 1500 domain transitions
per RPC message (corresponding to ~750 function calls) using the default
compartmentalisation policy. A custom policy results in 300 fewer ex_entry/msg, this is
slightly higher than the insecure case, however it is consistent with the observation that our
policy places libcrypto and libssl in the same logical compartment, therefore saving
some additional compartment switches.

These numbers, together with the traditional IPC overhead simulation, show that there is a
significant amount of additional work (amounting to 12 million domain transitions) performed
as a result of library compartmentalisation. With this experiment, we demonstrate that the
CHERI library compartmentalisation prototype being developed is able to scale to many
millions of domain transitions per second with relatively low overheads on top of CHERI
memory safety.

Figure - Reported value of the EXECUTIVE_ENTRY per RPC transaction.
The figure shows the ratio of the EXECUTIVE_ENTRY performance counter over the total number of RPC

transactions completed. Similarly to previous measurements, we report the data for 8-byte messages over both
insecure and SSL-encrypted channels. The measurements are however performed using the pure-capability ABI
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QPS variant. The score reported in this plot takes into account both the forward and return edges of a library
function call; therefore a score of 1000 ex_entry/msg corresponds to 500 function calls.

6. Security Evaluation
The security evaluation will review historic security vulnerabilities from nginx, Redis,
Postgres to assess whether our proposed or actual adaptations would have reduced the
severity of the vulnerabilities. This evaluation will primarily be performed as an analytical
study rather than an adversarial penetration testing exercise due to time and scope
constraints, but reflects reasonable best estimates of the impacts of CHERI memory
protection and compartmentalisation (as described). In the study we consider:

● Actual adaptations
○ Referential and spatial memory safety resulting from porting the software

component and its dependencies to CHERI C/C++.
○ Library compartmentalisation of existing dynamically loadable nginx modules

and nginx shared libraries.
● Proposed adaptations:

○ Heap temporal memory-safety, released in CheriBSD 23.11.
○ Library compartmentalisation of core nginx modules that are not currently

dynamically loadable such as the http module.

The raw data collected and used in our security evaluation can be found in Appendix B.

Security advisory information sources

For each software component, we review the complete set of Common Vulnerabilities and
Exposures (CVEs) or other announced past vulnerabilities. Where possible, we rely on
vulnerability lists documented on the web pages of the corresponding open-source project
websites (for example, nginx security advisories15). However, in cases where a project
doesn’t maintain such a list, we turn to externally maintained lists such as CVE Details16 or
the National Vulnerability Database (NVD).17 Vulnerabilities in supporting libraries are rarely
documented by the vendors themselves, in these cases OS vendor advisories and issue
trackers such as those from Ubuntu18 and RedHat19 were used. In our analysis, we indicate
the primary source(s) of vulnerability information used for each software component.

19 Product Security Center. RedHat. Retrieved March 14, 2024 from
https://access.redhat.com/security

18 Security notices. Ubuntu. Retrieved March 14, 2024 from
https://ubuntu.com/security/notices

17 National Vulnerability Database (NVD) - home. Nist.gov. Retrieved March 14, 2024 from
https://nvd.nist.gov

16 CVE security vulnerability database. Security vulnerabilities, exploits, references and more.
Cvedetails.com. Retrieved March 14, 2024 from https://www.cvedetails.com

15 nginx security advisories. Nginx.org. Retrieved March 14, 2024 from
https://nginx.org/en/security_advisories.html
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Advisory and vulnerability descriptions

Open-source projects with vulnerability disclosure processes request CVEs for specific
software vulnerabilities. However, their security advisories may address more than one
vulnerability - for example, when a set of related vulnerabilities is reported as a result of
deploying a new static analysis tool, or when auditing for further cases of a newly reported
vulnerability class. In our analysis, we consider vulnerabilities at the granularity provided by
the open-source project: one entry per advisory (and potentially multiple vulnerabilities) if
reported in that way by the project, and otherwise one entry per vulnerability if advisories are
not issued by the project.

For each table entry, we report the following:

● CVE(s): The unique vulnerability identifier(s) reported by the software vendor.
● Date: The date the vendor released an advisory or patch for the vulnerability.
● Severity: The indication of vulnerability severity, by the vendor, or our own, if not.
● Description: A very brief description of the vulnerability or vulnerabilities.
● Threat model: the assignment of the vulnerability to the project’s stated thread

model (described below).
● CWE(s): The unique software/hardware weakness identifier(s) reported by National

Institute of Standards and Technology (NIST) for the CVE.
● Assessment: Our brief assessment of the potential impact of CHERI memory

protection and compartmentalisation on the vulnerabilities. Where vulnerabilities
contain insufficient information, where the nature of the vulnerability was unspecified
or unclear, where the threat model or vulnerability argument was unclear, or where
our confidence in mitigation is lower we also note that here.

Threat model

Most open-source projects do not document a well- defined threat model. However, as many
of the projects have structured vulnerability disclosure and review processes, and assign
criticalities to disclosed vulnerabilities, we were able to reason about their de facto threat
models. In general, for the purposes of vulnerability analysis and disclosure, we assume
projects are concerned with remote code execution, private data disclosure, and denial of
service.

 Remote code execution

 For example, in nginx CVE-2021-23017 in which a malicious DNS response can trigger an
off-by-one error within the ngx_resolver_copy() leading to arbitrary code execution. Or
CVE-2022-31144 in which a remote attacker can pass specially crafted data to Redis,
triggering an heap-based buffer overflow and execution of arbitrary code on the target
system.

 Private data disclosure

 The Private Data Disclosure category relates to library or application logical bugs in which
private data is improperly disclosed. For example, in nginx CVE-2018-16845 in which a
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specially crafted mp4 file can result in the ngx_http_mp4_module disclosing worker
process memory.

 Denial of service

 Denial-of-service vulnerabilities are often assigned a lower severity than vulnerabilities
leading to arbitrary code execution. However, DoS vulnerabilities still featured prominently in
security advisories for web service stack components. This is particularly true for web
servers such as nginx, where the implications of a crash could be significant for the larger
application or set of applications being served. CHERI memory protection coerces potential
arbitrary code execution vulnerabilities into deterministic crashes, which may reduce a
critical vulnerability to one of low or moderate severity - but does not completely eliminate it.

Mitigation

We consider a vulnerability mitigated if a bug would no longer be considered a vulnerability
under the vendor’s threat model. However, as vendors rarely publish threat models, and we
must work with de facto ones, this presents some challenge to analysis. A partial mitigation
is recorded where the CHERI protections reduce the severity of an issue, for example
downgrading a RCE to denial of service resulting from a deterministic crash caused by the
CHERI protection fault.

Vulnerability analysis

Due to the limited timeline and scope of this project, we will rely heavily on the vulnerability
analyses provided by the software vendors (for example, in the vendor’s own revision-
control history or vulnerability announcement), or by a downstream software distribution (for
example, Ubuntu or Redhat analysis). A more rigorous study would perform more in-depth
studies of the specific code paths, ideally with an adversarial element to evaluate practical
exploitability.

Advisories that fall outside of our stated threat model such as: downgrading of the security of
the network connection, MITM attacks, and installer vulnerabilities are not considered in this
analysis. Any other advisories excluded from the analysis are explicitly mentioned along with
a justification for their exclusion.

Previous studies

Several previous whiteboard security evaluations of the CHERI protection model have been
performed, for the purposes of comparison of historical reported mitigation rates we refer to
two previous studies: “Security Analysis of the CHERI ISA”20 performed by Microsoft and
“Assessing the Viability of an Open-Source CHERI Desktop Software Ecosystem”21

21 Robert N. M. Watson, Ben Laurie, and Alex Richardson. Capabilities Limited. Assessing the Viability
of an Open- Source CHERI Desktop Software Ecosystem. Retrieved March 14, 2024 from
https://www.capabilitieslimited.co.uk/_files/ugd/f4d681_e0f23245dace466297f20a0dbd22d371.pdf

20 Nicolas Joly, Saif ElSherei, Saar Amar. Microsoft Security Response Center (MSRC)
. SECURITY ANALYSIS OF CHERI ISA. Retrieved March 14, 2024 from:
https://github.com/microsoft/MSRC-Security-Research/blob/master/papers/2020/Security%20analysis
%20of%20CHERI%20ISA.pdf
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performed by Capabilities Limited. In Microsoft’s evaluation they report that CHERI memory
safety had a strong potential mitigation impact: “If we consider combining CHERI’s current
protections with the additional mitigations recommended in this document, such as stack
initialization and heap initialization, including padding added to allocations due to bound
compression, we estimate that the protections would extend to deterministically mitigating
nearly half of the MSRC vulnerabilities we addressed through a security update in 2019.”.
Similarly Capabilities Limited’s desktop study reports that CHERI memory safety and CHERI
software compartmentalisation had a strong potential mitigation impact, ranging from 40% of
past vulnerabilities for KDE up to 100% in key supporting libraries.

In the desktop study compartmentalisation is assumed to provide a degree of mitigation for
some classes of denial of service vulnerabilities by limiting portions of applications affected
by software termination, including when crashes originate with memory-safety violations.
However, in the library compartmentalisation model library failure has the scope of the
process and therefore cannot (currently) provide any such mitigation; a key ongoing area of
research at Cambridge and SRI is how to provide for recovery following library failure, which
this project will help motivate. For the purposes of this evaluation we assume that the
compartmentalisation model can limit software termination to a specific compartment without
requiring restarting of the application. However, for anything other than stateless libraries
cleanly restarting a library on failure presents significant challenges, and may either result in
loss of data or require significant changes to the application to prevent data loss. Therefore,
we classify this a partial mitigation.

nginx
The figure below shows a breakdown of nginx vulnerabilities and their mitigation by
spatial/temporal memory safety provided by the CHERI protection model; note that this
analysis excludes the following Windows specific advisories: CVE-2011-4963,
CVE-2010-2263, and CORE-2010-0121. This shows that the mitigation rate of security
vulnerabilities in nginx with CHERI spatial/temporal memory protection is approximately
46%. This mitigation rate is broadly consistent with the ranges reported in previous studies
described above.
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Approximately 28% of CWEs (Common Weakness Enumeration) assigned to nginx security
advisories relate to buffer overwrites and overreads22. The prevalence of buffer overwrites
and over reads in the nginx security advisories accounts for the potential high levels of
mitigation provided by the CHERI protection model. It should also be noted that multiple
CWEs are often recorded against a single vulnerability, for example where an integer
overflow results in the buffer overwrite this is often recorded with both CWE-190 (Integer
Overflow) and CWE-787 (out-of-Bounds Write). This accounts for the overall mitigation rate
for nginx being higher than the percentage of CWEs for buffer overwrite/overreads.

Use after free weaknesses are relatively rare, with just two in the analysed data set.
However, it is believed that CHERI temporal memory safety protections would provide strong
mitigation for both of these issues.

Uncontrolled resource consumption is the second largest weakness assigned to nginx
vulnerabilities; with many of these being in the http2 protocol module. As the denial of
service of a webserver has the potential to impact a large number of users, the incentives for
a denial of service (DoS) attack on a server differ significantly than, for example, in a
desktop environment. The differing incentives may result in DoS being more prevalent in
server software with such attacks being assigned greater significance and thus have more
prestige for security researchers. However, without further analysis it is impossible to say
whether server software stacks in general possess greater rates of denial of service attacks,
or what impact this has on potential rates of mitigation from the CHERI protection model.

Applying library compartmentalisation to nginx modules improves the potential total
mitigation rate to 61% (up from 46% with CHERI spatial and temporal memory safety alone),
see the figure below. As discussed above where compartmentalisation is used to mitigate a

22 Note that several of the assigned CWEs address very similar weaknesses “Out-of-bounds Write”
(CWE-787 ), “Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')” (CWE-120 ), and
“Improper Restriction of Operations within the Bounds of a Memory Buffer” (CWE-119) all of these
CWEs are grouped in our analysis as buffer overwrites or overreads
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denial of service attack this is shown as a partial mitigation as significant questions remain
as to restarting a compartment without loss of data on failure. Furthermore, without
supporting mitigations such as blocking firewall an attacker can simply repeatedly retrigger a
given vulnerability resulting in denial of service.

Redis
The figure below shows a breakdown of Redis vulnerabilities and their mitigation by
spatial/temporal memory safety provided by the CHERI protection model. This shows that
mitigation of security vulnerabilities in Redis with CHERI spatial/temporal memory protection
is approximately in the range of 38% to 52% (note that CVE-2021-32762 was ignored in this
analysis as it was mitigated by platform memory allocator and not specifically by the CHERI
protection model). This mitigation rate seems broadly consistent with previously reported
results described above.

Exploration of compartmentalisation opportunities in Redis has not been systematically
explored within the current project. Though it should be noted that as Redis is a relatively
simple key/value store, compartmentalisation may be easier to apply than in the case of
Postgres discussed below.
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Postgres
The security evaluation of Postgres has been performed with version 9.6 using the official
Postgres security advisories for that version. Postgres version 9.6 was chosen as the target
for the security evaluation as this evaluation was performed early in the project prior to the
completion of porting work. At that time only the legacy port of Postgres v9.6 by Alex
Richardson at the University of Cambridge was available and it was unclear as to whether
the attempt to port a latter version (15 beta 4) would be successful.

The figure below shows that mitigation of reported security vulnerabilities in Postgres with
CHERI spatial memory protection is significantly lower than for nginx, Redis, and in
previously reported studies, with approximately between 12% and 18% of vulnerabilities
mitigated. This result is somewhat surprising as Postgres fits the established profile of
software likely to contain significant numbers of memory safety issues,its large and complex,
with lots of low level manipulation of memory.

Looking at the assigned CWEs approximately 36% of the Postgres security advisories
related to private data disclosure or remote code execution, that result from failures of the
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authentication and authorisation controls. A further 16% of security advisories relate to
improper input validation/SQL injection attacks. Therefore, in total, 52% of the security
advisories relate to attacks that CHERI-protections are not designed to mitigate. If we
consider only the remaining 48% of Postgres security advisories, the potential mitigation rate
with CHERI memory protection is between 25% and 37%. These figures are more consistent
with previously reported values though remain towards the low side.

Web servers such as nginx also have an explicit access control model preventing arbitrary
access of the underlying filesystem and isolating between virtual server instances (nginx
server blocks). However, whilst there are a number of nginx security advisories related to the
access control model - such as CVE-2010-2266 and CVE-2009-3898 - they are significantly
less common than in Postgres. It is possible that this is because the access control model in
nginx is simpler or more mature than in Postgres. Repeating the security evaluation for an
up to date version of Postgres (for example, 15 beta 4 ported in the project) would perhaps
give some insights as to how vulnerabilities evolve over time and the role the CHERI
protection model would have played in mitigating those issues. Section 7 discusses the
value of conducting a longitudinal study of the CHERI protection model.

Compartmentalisation enforces privilege separation such that code only accesses data to
which it is explicitly granted access. In a database such as Postgres, it remains unclear
where privilege separation can be usefully applied; as a database query can access all data
across the set of database tables. However, library compartmentalisation could be applied to
compartmentalise common operations such as, for example, hashing or string manipulation,
and can be trivially applied to libpq within the client applications. Evaluation of
compartmentalisation opportunities and benefits in Postgres has not been systematically
explored in the project.
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7. Future research and roadmap
This project is structured as a pilot research study similar to our previous study of desktop
software stacks. Building on this pilot, a future more comprehensive project would seek to
greatly expand the scope of server software stack including classes of software not included
in the pilot study. This includes increasing the choice of key components such as databases,
adding support for commonly used runtime environments such as NodeJS, including support
for languages such as Java and Python, and adding popular web frameworks such as
Spring Boot and Flask. In addition, the scope of changes to the server software would be
broadened to include enforcement of bounds in allocations by custom memory allocations,
enforcement of sub-object bounds within data structures, and changes to support new
CheriBSD temporal memory safety features.

Within this study we have only considered the library compartmentalisation model.
Coprocess isolation is an alternative, emerging compartmentalisation model built on the
CHERI protection model. A future research project would explore the application of the
coprocess compartmentalisation model in server software. Furthermore, we would like to
revisit the goal of providing per-request isolation, which may require more significant
changes to software prototypes and possibly the development of new data focussed
compartmentalisation models.

This project is one of the real-world applications of the library compartmentalisation, and it is
believed to be the first to explore compartmentalisation of C++ code. Library
compartmentalisation of C++ code introduces some significant research challenges. For
example, the interactions between the usage of C++ types - such as, lambda types - across
compartmentalisation boundaries has subtle properties that directly impact security.
Furthermore, these behaviours may not align well with user expectations resulting in
unintentional misuse that may introduce security vulnerabilities. Further research is required
in compartmentalisation of C++ code. As in this project, a codesign with a real-world use
case is likely to produce better and more mature outcomes than performing this work in
isolation.

The performance optimisations added to the library compartmentalisation model rely on
specifying policy to elide compartment transitions where there is minimal or no additional risk
to security. It remains an open research topic to determine where such policies originate.
User specified policies bring flexibility and can adapt to the specific needs of the application,
as in the case of our gRPC demonstrator where the Abseil libraries are composed into a
single compartment. Policy that originated from the user is inherently trusted but may not be
trustworthy. Common policy can be specified by the system, as in the case of the default
policy used in the nginx performance evaluation. However, if policy comes from the system
how is trust established? Trust in policy is different from placing trust in a large, complex
library processing user data, but this still raises questions about the increased scope of the
trusted computing base.

Compartmentalisation enforces privilege separation such that code only accesses data to
which it is explicitly granted access. In some cases it is clear, to someone with intimate
knowledge of the system, where opportunities for privilege separation are present. At other
times it may be less clear. Tooling that supports both identifying compartmentalisation
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opportunities and enforcing CHERI compartmentalisation, is an extremely important but
currently underexplored area that we would seek to address in a future research project.

Whereas it is relatively straightforward to provide the mechanics for integrity and
confidentiality guarantees around shared libraries, it is less clear how to address availability
in the presence of a library crash or hang: historically, it has been assumed that a library
failure has the scope of the process. As a result the library compartmentalisation model
cannot - currently - provide any mitigation (even a partial mitigation) for denial of service
attacks. Providing availability guarantees to software using compartmentalisation exposes
the application to the fact that it operates as part of a distributed system, for example
introducing a requirement to provide idempotency of requests to simplify retrying and
improve resilience to failures. Therefore, providing availability guarantees likely requires
significant rework of the application. Whilst restarting a stateless compartment may be fairly
straightforward, stateful processing requires the restoration of state on failure. Future
research on availability may consider the role for new operating abstractions such as
co-process isolation to manage compartments with the goal of providing practical availability
guarantees.

Whilst a number of paper-based studies have evaluated both aspects of the perceived ease
of use and utility of the CHERI protection model (both for spatial and temporal memory
safety, and with hypothetical compartmentalisation) these studies are limited in scope and
were performed independently of each other presenting questions about the comparability of
results. For example, in our previous study on desktop software stacks the
compartmentalisation model is assumed to provide mitigation against denial of service
attacks. Whereas in this study we assume only a partial mitigation under some future
implementation of the compartmentalisation model. Such differences make comparison of
the overall potential mitigation rates problematic. A high-quality, longitudinal study conducted
using a single consistent methodology, across multiple technology areas is required to
provide strong evidence for both perceived utility and ease of use of the CHERI protection
model.

8. Conclusions
This project has ported a total of 1.7 million lines of server-side software code to memory
safe CHERI C/C++. The porting effort has been for the most part straightforward, affecting
approximately 0.1% of the total lines of code. The scope and size of the code changes is
consistent with previous reports on CHERI C/C++ software porting efforts. Additionally, we
provide a number of case-studies that show interesting portability challenges we faced
during this project.

Our performance measurement and analysis has been constrained by practical limitations of
the Morello prototype, which has not undergone significant optimisation of its hardware
design. It is important to interpret our performance results in the context of Arm and the
University of Cambridge’s performance report, which notes the potential for an 80%-88%
reduction in overhead from measured results on the Morello board, even using the recently
released Benchmark ABI, when further optimization is applied to the hardware
implementation as expected of a production design.
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Our memory safe experimental port of nginx exhibits a 2% reduction in requests/sec
compared to the baseline hybrid version (running without memory safety), running on the
Morello board and compiled with the Benchmark ABI. The initially unoptimised library
compartmentalisation significantly impacted nginx’s performance, prompting a co-design
optimisation activity that contributed to the development of compartmentalisation policies.
The default compartmentalisation policy achieves about a 2.5% overhead with respect to the
memory safe prototype.

The gRPC performance overhead is more significant. The QPS throughput benchmark
exhibits a 16% reduction in messages/sec for the insecure and SSL workloads, when
compared to the baseline hybrid version. Library compartmentalisation introduces an
additional 12% to 14% reduction in messages/sec, which can be reduced down to about 5%
to 9% respectively for the insecure and SSL workloads, with the use of a custom library
compartmentalisation policy. The performance results show that our prototype was able to
scale to many millions of domain transitions per second with relatively low overheads on top
of CHERI memory safety.

Although these performance impacts are within previously observed worst-case values, they
are significant for high-performance software components and therefore warrant further
investigation to determine the root cause and possible optimizations. In particular, we hope
that versions of these workloads may be run on Arm’s modified FPGA implementations of
Morello in the future, allowing a more accurate estimate of potential CHERI performance on
future, more mature microarchitectures.

We have reviewed past vulnerabilities for the majority of the components of our software
stacks. We estimate the impact of CHERI memory safety on a relevant subset of past
vulnerabilities. In particular, we attempt to limit the analysis to those vulnerabilities that are
part of the threat model for the software component under consideration. Unsurprisingly, the
share of vulnerabilities mitigated with CHERI memory safety depends on the share of
memory safety vulnerabilities for each software project. nginx exhibits a mitigation rate of
around 46% and Redis between 38% to 52%. Both are in line with previous analysis of past
vulnerabilities with respect to CHERI memory safety. Conversely, only between 12% and
18% of Postgres are considered to be mitigated. This can be attributed to the prevalence of
access-control vulnerabilities in this software’s vulnerability history, which are not addressed
by CHERI. It is unclear how to interpret the dominance of non-memory-safety bugs in
Postgres, which is atypical of open-source C/C++ software, and further analysis is required.

We also evaluate the effects of library compartmentalisation on past vulnerabilities. To this
end, we make the assumption that it will be possible to provide a recovery mechanism from
crashes at library granularity. However, for anything other than stateless libraries cleanly
restarting a library on failure presents significant challenges (and may either result in loss of
data or require significant changes to the application to prevent data loss). Therefore, we
classify this a partial mitigation. Under these assumptions, we observe that a further 15% of
nginx vulnerabilities may be mitigated giving an overall mitigation rate of 61%.

As a result of this project, the maturity of the library compartmentalisation model
implementation in CheriBSD has significantly increased. We provide the first real-world C
and C++ use cases of library compartmentalisation which motivated improvements in
domain transition observability via traces, as well as performance improvements in the form
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of compartmentalisation policies. Finally, a number of bug fixes were made to the library
compartmentalisation implementation as a result of this project.
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Unset

Unset

Appendix A: Performance Evaluation Raw Data

nginx
The table below shows measured requests/sec and transfer MB/sec measured using the wrk
benchmarking tool ran in the following configuration:

./wrk -t 1 -c 50 -d 1m --latency https://192.168.2.2/rps/1kb-random.bin

nginx software configuration
Requests/s
ec

Transfer
MB/sec

Performance
overhead
relative to
Hybrid
(baseline)

No-memory safety 33916 43.34 -

Memory safety 33450 42.74 1.37

Memory safety plus library
compartmentalisation - default policy 32606 41.67 3.86

Memory safety plus lowerbound IPC
overhead 20237 25.86 40.33

gRPC

The table below shows measured message/sec using the QPS benchmark tools that are
part of the gRPC test suite. The results here use the following unmodified scenario files:

- grpc_cpp_protobuf_async_streaming_qps_unconstrained_insecure_8b.json
- grpc_cpp_protobuf_async_streaming_qps_unconstrained_secure_8b.json

Both scenario files are generated using the following command:

./tools/run_tests/performance/scenario_config_exporter.py -l c++ -r '.*' -f
grpc_ --export_scenarios --category all
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gRPC software
configuration

Throughput
(QPS)

SSL
Throughput
(QPS)

Throughput %
overhead
relative no
memory safety

SSL
Throughput %
overhead
relative to no
memory safety

No memory
safety 53827 37276 - -

Spatial memory
safety 45342 31175 15.76 16.37

Spatial memory
safety + default
c18n policy 39851 26597 25.96 28.65

Spatial memory
safety + custom
c18n policy 42984 28494 20.14 23.56

Spatial memory
safety +
lowerbound IPC
overhead 15567 8396 71.08 77.48
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Appendix B: Security Evaluation Raw Data

nginx
Primary source of security advisories: https://nginx.org/en/security_advisories.html

CVE Date Severity Description Threat model CWE Assessment

CVE-2022-41741 2022-10-19 Medium NGINX Open Source before
versions 1.23.2 and 1.22.1,
NGINX Open Source
Subscription before versions
R2 P1 and R1 P1, and NGINX
Plus before versions R27 P1
and R26 P1 have a
vulnerability in the module
ngx_http_mp4_module that
might allow a local attacker to
corrupt NGINX worker
memory, resulting in its
termination or potential other
impact using a specially
crafted audio or video file. The
issue affects only NGINX
products that are built with the
ngx_http_mp4_module, when
the mp4 directive is used in
the configuration file. Further,
the attack is possible only if an
attacker can trigger
processing of a specially
crafted audio or video file with

Denial-of-Service

Private data
disclosure

CWE-787
(Out-of-bounds
Write)

Partially mitigated.

Out-of-bounds write
coerced into a
deterministic crash.

This vulnerability was
caused by a failure to
enforce a constraint
on mp4 atoms (a
logical error). A
specially crafted mp4
file can then result in
an out-of-bounds
write corrupting nginx
worker memory,
leading to a crash or
other issues.

Though the issue has
the potential to result
in data disclosure or
remote code
execution analysis to

CVE-2022-41742
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the module
ngx_http_mp4_module.

confirm is beyond the
current project scope.

Compartmentalisation
of the nginx mp4
module partially
mitigates the denial of
service.

CVE-2021-23017 2021-05-25 Medium A security issue in nginx
resolver was identified, which
might allow an attacker who is
able to forge UDP packets
from the DNS server to cause
1-byte memory overwrite,
resulting in worker process
crash or potential other
impact.

Denial-of-Service

Private data
disclosure

CWE-193
(Off-by-one
Error)

Partially mitigated.

1-byte overwrite
coerced into a
deterministic crash.
Although still resulting
in denial of service,
this prevents other
potential impacts.

Though the issue has
the potential to result
in data disclosure or
remote code
execution analysis to
confirm is beyond the
current project scope.

Issue patches
ngx_resolver.c in
src/core not a
module, so no
mitigation by
compartmentalisation
without changes.
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CVE-2019-9511 2019-08-13 Medium Some HTTP/2
implementations are
vulnerable to window size
manipulation and stream
prioritisation manipulation,
potentially leading to a denial
of service. The attacker
requests a large amount of
data from a specified resource
over multiple streams. They
manipulate window size and
stream priority to force the
server to queue the data in
1-byte chunks. Depending on
how efficiently this data is
queued, this can consume
excess CPU, memory, or both.

Denial-of-service CWE-770
(Allocation of
Resources
Without Limits
or Throttling)

CWE-400
(Uncontrolled
Resource
Consumption)

Unmitigated

CVE-2019-9513 2019-08-13 Low Some HTTP/2
implementations are
vulnerable to resource loops,
potentially leading to a denial
of service. The attacker
creates multiple request
streams and continually
shuffles the priority of the
streams in a way that causes
substantial churn to the priority
tree. This can consume
excess CPU.

Denial-of-service CWE-400
(Uncontrolled
Resource
Consumption)

Unmitigated

CVE-2019-9516 2019-08-13 Low Some HTTP/2
implementations are
vulnerable to a header leak,

Denial-of-service CWE-770
(Allocation of
Resources

Unmitigated
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potentially leading to a denial
of service. The attacker sends
a stream of headers with a
0-length header name and
0-length header value,
optionally Huffman encoded
into 1-byte or greater headers.
Some implementations
allocate memory for these
headers and keep the
allocation alive until the
session dies. This can
consume excess memory.

Without Limits
or Throttling)

CWE-400
(Uncontrolled
Resource
Consumption)

CVE-2018-16843 2018-11-06 Low nginx before versions 1.15.6
and 1.14.1 has a vulnerability
in the implementation of
HTTP/2 that can allow for
excessive memory
consumption. This issue
affects nginx compiled with the
ngx_http_v2_module (not
compiled by default) if the
'http2' option of the 'listen'
directive is used in a
configuration file.

Denial-of-service CWE-400
(Uncontrolled
Resource
Consumption)

Unmitigated

CVE-2018-16844 2018-11-06 Low nginx before versions 1.15.6
and 1.14.1 has a vulnerability
in the implementation of
HTTP/2 that can allow for
excessive CPU usage. This
issue affects nginx compiled
with the ngx_http_v2_module

Denial-of-service CWE-400
(Uncontrolled
Resource
Consumption)

Unmitigated
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(not compiled by default) if the
'http2' option of the 'listen'
directive is used in a
configuration file.

CVE-2018-16845 2018-11-06 Medium nginx before versions 1.15.6,
1.14.1 has a vulnerability in
the ngx_http_mp4_module,
which might allow an attacker
to cause infinite loop in a
worker process, cause a
worker process crash, or
might result in worker process
memory disclosure by using a
specially crafted mp4 file. The
issue only affects nginx if it is
built with the
ngx_http_mp4_module (the
module is not built by default)
and the .mp4. directive is used
in the configuration file.
Further, the attack is only
possible if an attacker is able
to trigger processing of a
specially crafted mp4 file with
the ngx_http_mp4_module.

Denial-of-service CWE-835
(Loop with
Unreachable
Exit Condition
('Infinite
Loop'))

CWE-400
(Uncontrolled
Resource
Consumption)

Partially mitigated.

Out-of-bounds read
coerced into a
deterministic crash.
Although still resulting
in denial of service,
this prevents other
potential impacts.

This vulnerability was
caused by a failure to
enforce constraint on
mp4 atom sizes (>=
size of the atom
header).

Compartmentalisation
of the nginx mp4
module partially
mitigates the denial of
service.

CVE-2017-7529 2017-07-11 Medium Nginx versions since 0.5.6 up
to and including 1.13.2 are
vulnerable to integer overflow
vulnerability in nginx range
filter module resulting into leak
of potentially sensitive

Private data
disclosure

CWE-190
(Integer
Overflow or
Wraparound)

Mitigated

An HTTP Range
request asks the
server to send only a
portion of an HTTP
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information triggered by
specially crafted request.

message back to a
client. The request for
data outside the valid
range produces an
over read, coerced by
CHERI protections to
a deterministic crash.

CVE-2016-4450 2016-05-31 Medium os/unix/ngx_files.c in nginx
before 1.10.1 and 1.11.x
before 1.11.1 allows remote
attackers to cause a denial of
service (NULL pointer
dereference and worker
process crash) via a crafted
request, involving writing a
client request body to a
temporary file.

Denial-of-service CWE-476
(NULL Pointer
Dereference)

Unmitigated

Issue not in a
dynamically loaded
module, so
unmitigated by
compartmentalisation
without reengineering.

CVE-2016-0742 2016-01-26 Medium The resolver in nginx before
1.8.1 and 1.9.x before 1.9.10
allows remote attackers to
cause a denial of service
(invalid pointer dereference
and worker process crash) via
a crafted UDP DNS response.

Denial-of-service CWE-476
(NULL Pointer
Dereference)

Unmitigated

Issue not in a
dynamically loaded
module, so
unmitigated by
compartmentalisation
without reengineering.

CVE-2016-0746 2016-01-26 Medium Use-after-free vulnerability in
the resolver in nginx 0.6.18
through 1.8.0 and 1.9.x before
1.9.10 allows remote attackers
to cause a denial of service
(worker process crash) or

Denial-of-service CWE-416 (Use
After Free)

Partially mitigated

UAF vulnerability
would be mitigated
with CHERI-backed
temporary memory
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possibly have unspecified
other impact via a crafted DNS
response related to CNAME
response processing.

safety protections.
Although still resulting
in denial of service,
this prevents other
potential impacts.

Issue not in a
dynamically loaded
module, so
unmitigated by
compartmentalisation
without reengineering.

CVE-2016-0747 2016-01-26 Medium The resolver in nginx before
1.8.1 and 1.9.x before 1.9.10
does not properly limit
CNAME resolution, which
allows remote attackers to
cause a denial of service
(worker process resource
consumption) via vectors
related to arbitrary name
resolution.

Denial-of-service CWE-400
(Uncontrolled
Resource
Consumption)

Unmitigated

CVE-2014-3616 2014-09-16 Medium nginx 0.5.6 through 1.7.4,
when using the same shared
ssl_session_cache or
ssl_session_ticket_key for
multiple servers, can reuse a
cached SSL session for an
unrelated context, which
allows remote attackers with
certain privileges to conduct
"virtual host confusion"

Private data
disclosure

CWE-613
(Insufficient
Session
Expiration)

Unmitigated
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attacks.

CVE-2014-3556 2014-08-05 Medium The STARTTLS
implementation in
mail/ngx_mail_smtp_handler.c
in the SMTP proxy in nginx
1.5.x and 1.6.x before 1.6.1
and 1.7.x before 1.7.4 does
not properly restrict I/O
buffering, which allows
man-in-the-middle attackers to
insert commands into
encrypted SMTP sessions by
sending a cleartext command
that is processed after TLS is
in place, related to a "plaintext
command injection" attack, a
similar issue to
CVE-2011-0411

Remote code
execution

CWE-77
(Improper
Neutralization
of Special
Elements used
in a Command
('Command
Injection'))

Unmitigated

CVE-2014-0133 2014-03-18 Major Heap-based buffer overflow in
the SPDY implementation in
nginx 1.3.15 before 1.4.7 and
1.5.x before 1.5.12 allows
remote attackers to execute
arbitrary code via a crafted
request.

Remote code
execution

CWE-787
(Out-of-bounds
Write)

Mitigated

CVE-2014-0088 2014-03-04 Major The SPDY implementation in
the ngx_http_spdy_module
module in nginx 1.5.10 before
1.5.11, when running on a
32-bit platform, allows remote
attackers to execute arbitrary
code via a crafted request.

Remote code
execution

CWE-119
(Improper
Restriction of
Operations
within the
Bounds of a
Memory

Mitigated
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Buffer)

CVE-2013-4547 2013-11-19 Medium nginx 0.8.41 through 1.4.3 and
1.5.x before 1.5.7 allows
remote attackers to bypass
intended restrictions via an
unescaped space character in
a URI.

Private data
disclosure

CWE-116
(Improper
Encoding or
Escaping of
Output)

Unmitigated

CVE-2013-2070 2013-05-13 Medium http/modules/ngx_http_proxy_
module.c in nginx 1.1.4
through 1.2.8 and 1.3.0
through 1.4.0, when
proxy_pass is used with
untrusted HTTP servers,
allows remote attackers to
cause a denial of service
(crash) and obtain sensitive
information from worker
process memory via a crafted
proxy response, a similar
vulnerability to
CVE-2013-2028.

Denial of service

Private data
disclosure

NVD-CWE-noi
nfo (Insufficient
Information)

Partially mitigated

Out-of-bounds read
coerced into a
deterministic crash.
Although still resulting
in denial of service,
this prevents other
potential impacts.

Compartmentalisation
of the nginx
ngx_http_proxy
module partially
mitigates the denial of
service.

CVE-2013-2028 2013-05-07 Major The ngx_http_parse_chunked
function in
http/ngx_http_parse.c in nginx
1.3.9 through 1.4.0 allows
remote attackers to cause a
denial of service (crash) and
execute arbitrary code via a
chunked Transfer-Encoding
request with a large chunk

Denial of service

Remote code
execution

CWE-787
(Out-of-bounds
Write)

Partially mitigated

Stack based buffer
overflow coerced into
deterministic crash.
Although still resulting
in denial of service,
this prevents remote
code execution.

59

https://nvd.nist.gov/vuln/detail/CVE-2013-4547
http://cwe.mitre.org/data/definitions/116.html
https://nvd.nist.gov/vuln/detail/CVE-2013-2070
https://nvd.nist.gov/vuln/detail/CVE-2013-2028
http://cwe.mitre.org/data/definitions/787.html


size, which triggers an integer
signedness error and a
stack-based buffer overflow.

Compartmentalisation
of the nginx http
module partially
mitigates the denial of
service.

CVE-2012-2089 2012-04-12 Major Buffer overflow in
ngx_http_mp4_module.c in
the ngx_http_mp4_module
module in nginx 1.0.7 through
1.0.14 and 1.1.3 through
1.1.18, when the mp4 directive
is used, allows remote
attackers to cause a denial of
service (memory overwrite) or
possibly execute arbitrary
code via a crafted MP4 file.

Denial of service

Remote code
execution

CWE-120
(Buffer Copy
without
Checking Size
of Input
('Classic Buffer
Overflow'))

Partially mitigated

Buffer overflow
coerced into a
deterministic crash.
Although still resulting
in denial of service,
this prevents other
potential impacts.

Compartmentalisation
of the nginx mp4
module partially
mitigates the denial of
service.

CVE-2012-1180 2012-03-15 Major Use-after-free vulnerability in
nginx before 1.0.14 and 1.1.x
before 1.1.17 allows remote
HTTP servers to obtain
sensitive information from
process memory via a crafted
backend response, in
conjunction with a client
request.

Private data
disclosure

CWE-416 (Use
After Free)

Mitigated

UAF vulnerability
would be mitigated
with CHERI-backed
temporary memory
safety protections.

CVE-2011-4315 2011 Medium Heap-based buffer overflow in
compression-pointer

Denial of service CWE-787
(Out-of-bounds

Partially Mitigated
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processing in
core/ngx_resolver.c in nginx
before 1.0.10 allows remote
resolvers to cause a denial of
service (daemon crash) or
possibly have unspecified
other impact via a long
response.

Write) Buffer overflow
coerced into a
deterministic crash.
Although still resulting
in denial of service,
this prevents other
potential impacts.

Issue not in a
dynamically loaded
module, so
unmitigated by
compartmentalisation
without reengineering.

CVE-2010-2266 2010 Major nginx 0.8.36 allows remote
attackers to cause a denial of
service (crash) via certain
encoded directory traversal
sequences that trigger
memory corruption, as
demonstrated using the
"%c0.%c0." sequence.

Denial-of-service CWE-22
(Improper
Limitation of a
Pathname to a
Restricted
Directory
('Path
Traversal'))

Unmitigated

Issue not in a
dynamically loaded
module, so
unmitigated by
compartmentalisation
without reengineering.

CVE-2009-4487 2009 None nginx 0.7.64 writes data to a
log file without sanitizing
non-printable characters,
which might allow remote
attackers to modify a window's
title, or possibly execute
arbitrary commands or
overwrite files, via an HTTP
request containing an escape
sequence for a terminal

Private data
disclosure

NVD-CWE-noi
nfo (Insufficient
Information)

Unmitigated

Issue not in a
dynamically loaded
module, so
unmitigated by
compartmentalisation
without reengineering.
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emulator.

CVE-2009-3898 2009 Minor Directory traversal
vulnerability in
src/http/modules/ngx_http_dav
_module.c in nginx (aka
Engine X) before 0.7.63, and
0.8.x before 0.8.17, allows
remote authenticated users to
create or overwrite arbitrary
files via a .. (dot dot) in the
Destination HTTP header for
the WebDAV (1) COPY or (2)
MOVE method.

Private data
disclosure

CWE-22
(Improper
Limitation of a
Pathname to a
Restricted
Directory
('Path
Traversal'))

Unmitigated

CVE-2009-2629 2009 Major Buffer underflow in
src/http/ngx_http_parse.c in
nginx 0.1.0 through 0.5.37,
0.6.x before 0.6.39, 0.7.x
before 0.7.62, and 0.8.x
before 0.8.15. Exploitation of
this vulnerability would cause
the nginx server to write data
contained in the URI to heap
memory before the allocated
buffer.

Private data
disclosure

CWE-787
(Out-of-bounds
Write)

Mitigated

Out-of-bounds write
underflowing buffer
coerced into a
deterministic crash.

Compartmentalisation
of the nginx http
module partially
mitigates the denial of
service.

CVE-2009-3896 2009 Major src/http/ngx_http_parse.c in
nginx (aka Engine X) 0.1.0
through 0.4.14, 0.5.x before
0.5.38, 0.6.x before 0.6.39,
0.7.x before 0.7.62, and 0.8.x
before 0.8.14 allows remote
attackers to cause a denial of

Denial-of-service CWE-119
(Improper
Restriction of
Operations
within the
Bounds of a
Memory

Unmitigated

Compartmentalisation
of the nginx mp4
module partially
mitigates the denial of
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service (NULL pointer
dereference and worker
process crash) via a long URI.

Buffer) service.

Redis
Primary source of security advisories: https://github.com/redis/redis/security/advisories

CVE Date Severity Description Threat model CWE Assessment

CVE-2023-28856 2023-04-18 Moderate Authenticated users can use
the HINCRBYFLOAT command
to create an invalid hash field
that may later crash Redis on
access.

Denial of
service

CWE-617
(Reachable
Assertion)

CWE-20
(Improper Input
Validation)

Unmitigated

CVE-2023-28425 2023-03-20 Moderate Authenticated users can use
the MSETNX command to
trigger a runtime assertion and
termination of the Redis server
process.

Denial of
service

CWE-617
(Reachable
Assertion)

CWE-77
(Improper
Neutralization of
Special Elements
used in a
Command
('Command
Injection'))

Unmitigated

CVE-2023-25155 2023-02-28 Moderate Authenticated users issuing
specially crafted

Denial of
service

CWE-190
(Integer Overflow

Unmitigated
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SRANDMEMBER,
ZRANDMEMBER, and
HRANDFIELD commands can
trigger an integer overflow,
resulting in a runtime assertion
and termination of the Redis
server process.

or Wraparound)

CVE-2023-22458 2023-01-20 Moderate Authenticated users can issue
a HRANDFIELD or
ZRANDMEMBER command with
specially crafted arguments to
trigger a denial-of-service by
crashing Redis with an
assertion.

Denial of
service

CWE-190
(Integer Overflow
or Wraparound)

Unmitigated

CVE-2022-36021 2023-02-28 Moderate Authenticated users can use
string matching commands
(like SCAN or KEYS) with a
specially crafted pattern to
trigger a denial-of-service
attack on Redis, causing it to
hang and consume 100% CPU
time.

Denial of
service

CWE-407
(Inefficient
Algorithmic
Complexity)

Unmitigated

CVE-2022-35977 2023-01-20 Medium Authenticated users issuing
specially crafted SETRANGE
and SORT(_RO) commands
can trigger an integer overflow,
resulting with Redis attempting
to allocate impossible amounts
of memory and abort with an
OOM panic.

Denial of
service

CWE-190
(Integer Overflow
or Wraparound)

Unmitigated
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CVE-2022-35951 2022-09-26 High Executing a XAUTOCLAIM
command on a stream key in a
specific state, with a specially
crafted COUNT argument may
cause an integer overflow, a
subsequent heap overflow, and
potentially lead to remote code
execution. The problem affects
Redis versions 7.0.0 or newer.

Remote code
execution

CWE-190
(Integer Overflow
or Wraparound)

Mitigated

Although the root
cause is an integer
overflow, this is
subsequently used to
perform a heap
overflow from which
RCE may be
obtained. The heap
overflow is coerced
into a deterministic
crash by CHERI
protections. Further,
detailed analysis is
required to assess the
impact of the integer
overflow in isolation.

CVE-2022-31144 2022-06-22 High A specially crafted
XAUTOCLAIM command on a
stream key in a specific state
may result with heap overflow,
and potentially remote code
execution. The problem affects
Redis versions 7.0.0 or newer.

Remote code
execution

CWE-787
(Out-of-bounds
Write)

CWE-122
(Heap-based
Buffer Overflow)

Probably Mitigated

Within the scope of
the project it was not
possible to identify the
exact commit related
to this issue. Whilst it
is likely that CHERI
spatial memory
protections mitigate
the issue further
investigation is
needed to confirm
this.
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CVE-2022-24735 2022-04-27 Low By exploiting weaknesses in
the Lua script execution
environment, an attacker with
access to Redis can inject Lua
code that will execute with the
(potentially higher) privileges of
another Redis user.

The Lua script execution
environment in Redis provides
some measures that prevent a
script from creating side effects
that persist and can affect the
execution of the same, or
different script, at a later time.
Several weaknesses of these
measures have been publicly
known for a long time, but they
had no security impact as the
Redis security model did not
endorse the concept of users
or privileges.

With the introduction of ACLs
in Redis 6.0, these
weaknesses can be exploited
by a less privileged users to
inject Lua code that will
execute at a later time, when a
privileged user executes a Lua
script.

Remote code
execution

CWE-94
(Improper Control
of Generation of
Code ('Code
Injection'))

Unmitigated

CVE-2022-24736 2022-04-27 Low An attacker attempting to load Denial of CWE-476 (NULL Unmitigated
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a specially crafted Lua script
can cause NULL pointer
dereference which will result
with a crash of the redis-server
process. This issue affects all
versions of Redis.

service Pointer
Dereference)

CVE-2021-41099 2021-10-04 High An integer overflow bug in the
underlying string library can be
used to corrupt the heap and
potentially result with denial of
service or remote code
execution.

The vulnerability involves
changing the default
proto-max-bulk-len
configuration parameter to a
very large value and
constructing specially crafted
network payloads or
commands.

Denial of
service

CWE-190
(Integer Overflow
or Wraparound)

CWE-680
(Integer Overflow
to Buffer
Overflow)

Partially mitigated

Allocation of
hdrlen+newlen+1
results in integer
overflow of size_t
type. The following
memcpy into the
buffer is coerced into
a deterministic crash
by CHERI’s spatial
memory protections.

CVE-2021-32761 2021-07-21 High On 32-bit versions, Redis
BITFIELD command is
vulnerable to integer overflow
that can potentially be exploited
to corrupt the heap, leak
arbitrary heap contents or
trigger remote code execution.
The vulnerability involves
constructing specially crafted bit
commands which overflow the

Remote code
execution

Private data
disclosure

CWE-190
(Integer Overflow
or Wraparound)

CWE-680
(Integer Overflow
to Buffer
Overflow)

Probably mitigated

Further investigation
required. The use of
an integer overflow to
corrupt the heap is
likely to be mitigated,
but without identifying
the scope of the
commit fixing the
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bit offset.

This problem only affects 32-bit
versions of Redis.

issue this is hard to
confirm.

CVE-2021-32687 2021-10-04 High Redis is an open source,
in-memory database that
persists on disk. An integer
overflow bug affecting all
versions of Redis can be
exploited to corrupt the heap
and potentially be used to leak
arbitrary contents of the heap
or trigger remote code
execution. The vulnerability
involves changing the default
set-max-intset-entries
configuration parameter to a
very large value and
constructing specially crafted
commands to manipulate sets.
The problem is fixed in Redis
versions 6.2.6, 6.0.16 and
5.0.14. An additional
workaround to mitigate the
problem without patching the
redis-server executable is to
prevent users from modifying
the set-max-intset-entries
configuration parameter. This
can be done using ACL to
restrict unprivileged users from
using the CONFIG SET
command.

Remote code
execution

Private data
disclosure

CWE-190
(Integer Overflow
or Wraparound)

CWE-125
(Out-of-bounds
Read)

CWE-680
(Integer Overflow
to Buffer
Overflow)

Mitigated

The operation
len*intrev32ifbe
(is->encoding) in
intsetResize
results in integer
overflow of the
uint32_t type,
resulting in an
incorrect buffer
reallocation.
Subsequent buffer
overwrites are
coerced to a
deterministic crash by
CHERI spatial
memory
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CVE-2021-32675 2021-10-04 High Redis is an open source,
in-memory database that
persists on disk. When parsing
an incoming Redis Standard
Protocol (RESP) request,
Redis allocates memory
according to user-specified
values which determine the
number of elements (in the
multi-bulk header) and size of
each element (in the bulk
header). An attacker delivering
specially crafted requests over
multiple connections can
cause the server to allocate
significant amount of memory.
Because the same parsing
mechanism is used to handle
authentication requests, this
vulnerability can also be
exploited by unauthenticated
users. The problem is fixed in
Redis versions 6.2.6, 6.0.16
and 5.0.14. An additional
workaround to mitigate this
problem without patching the
redis-server executable is to
block access to prevent
unauthenticated users from
connecting to Redis. This can
be done in different ways:
Using network access control
tools like firewalls, iptables,
security groups, etc. or

Denial-of-servic
e

CWE-770
(Allocation of
Resources
Without Limits or
Throttling)

Unmitigated
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Enabling TLS and requiring
users to authenticate using
client side certificates.

CVE-2021-32672 2021-10-04 Low Redis is an open source,
in-memory database that
persists on disk. When using
the Redis Lua Debugger, users
can send malformed requests
that cause the debugger’s
protocol parser to read data
beyond the actual buffer. This
issue affects all versions of
Redis with Lua debugging
support (3.2 or newer). The
problem is fixed in versions
6.2.6, 6.0.16 and 5.0.14.

Private data
disclosure

CWE-125
(Out-of-bounds
Read)

Mitigated

Lua debugger
command parsing
(ldbReplParseComm
and) results in an
over read. This is
coerced to a
deterministic crash by
CHERI spatial
memory protections.

CVE-2021-32628 2021-10-04 High Redis is an open source,
in-memory database that
persists on disk. An integer
overflow bug in the ziplist data
structure used by all versions
of Redis can be exploited to
corrupt the heap and
potentially result with remote
code execution. The
vulnerability involves modifying
the default ziplist configuration
parameters
(hash-max-ziplist-entries,
hash-max-ziplist-value,
zset-max-ziplist-entries or
zset-max-ziplist-value) to a

Remote code
execution

CWE-190
(Integer Overflow
or Wraparound)

CWE-680
(Integer Overflow
to Buffer
Overflow)

Mitigated

The addition of the
computation of
totelelen and the
check totelelen >
STREAM_LISTPACK_
MAX_SIZE to
streamAppendItem
prevents the buffer
overwrite. This
overwrite would be
coerced to a
deterministic crash by
CHERI spatial
memory protections.
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very large value, and then
constructing specially crafted
commands to create very large
ziplists. The problem is fixed in
Redis versions 6.2.6, 6.0.16,
5.0.14. An additional
workaround to mitigate the
problem without patching the
redis-server executable is to
prevent users from modifying
the above configuration
parameters. This can be done
using ACL to restrict
unprivileged users from using
the CONFIG SET command.

CVE-2021-32627 2021-10-04 High Redis is an open source,
in-memory database that
persists on disk. In affected
versions an integer overflow
bug in Redis can be exploited
to corrupt the heap and
potentially result with remote
code execution. The
vulnerability involves changing
the default proto-max-bulk-len
and client-query-buffer-limit
configuration parameters to
very large values and
constructing specially crafted
very large stream elements.
The problem is fixed in Redis
6.2.6, 6.0.16 and 5.0.14. For
users unable to upgrade an

Remote code
execution

CWE-190
(Integer Overflow
or Wraparound)

CWE-680
(Integer Overflow
to Buffer
Overflow)
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additional workaround to
mitigate the problem without
patching the redis-server
executable is to prevent users
from modifying the
proto-max-bulk-len
configuration parameter. This
can be done using ACL to
restrict unprivileged users from
using the CONFIG SET
command.

CVE-2021-32626 2021-10-04 High Redis is an open source,
in-memory database that
persists on disk. In affected
versions specially crafted Lua
scripts executing in Redis can
cause the heap-based Lua
stack to be overflowed, due to
incomplete checks for this
condition. This can result with
heap corruption and potentially
remote code execution. This
problem exists in all versions
of Redis with Lua scripting
support, starting from 2.6. The
problem is fixed in versions
6.2.6, 6.0.16 and 5.0.14. For
users unable to update an
additional workaround to
mitigate the problem without
patching the redis-server
executable is to prevent users
from executing Lua scripts.

Remote code
execution

CWE-787
(Out-of-bounds
Write)

CWE-122
(Heap-based
Buffer Overflow)

Unmitigated
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This can be done using ACL to
restrict EVAL and EVALSHA
commands.

CVE-2021-29478 2021-05-03 High Redis is an open source (BSD
licensed), in-memory data
structure store, used as a
database, cache, and
message broker. An integer
overflow bug in Redis 6.2
before 6.2.3 could be exploited
to corrupt the heap and
potentially result with remote
code execution. Redis 6.0 and
earlier are not directly affected
by this issue. The problem is
fixed in version 6.2.3. An
additional workaround to
mitigate the problem without
patching the `redis-server`
executable is to prevent users
from modifying the
`set-max-intset-entries`
configuration parameter. This
can be done using ACL to
restrict unprivileged users from
using the `CONFIG SET`
command.

Remote code
execution

CWE-190
(Integer Overflow
or Wraparound)

Mitigated

Further analysis
identifying the scope
of the commit fixing
the issue is required
to confirm the
mitigation of resultant
heap corruption.

CVE-2021-29477 2021-05-03 High Redis is an open source (BSD
licensed), in-memory data
structure store, used as a
database, cache, and
message broker. An integer

Remote code
execution

CWE-190
(Integer Overflow
or Wraparound)

Probably Mitigated

Further analysis
identifying the scope
of the commit fixing
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overflow bug in Redis version
6.0 or newer could be
exploited using the `STRALGO
LCS` command to corrupt the
heap and potentially result with
remote code execution. The
problem is fixed in version
6.2.3 and 6.0.13. An additional
workaround to mitigate the
problem without patching the
redis-server executable is to
use ACL configuration to
prevent clients from using the
`STRALGO LCS` command.

the issue is required
to confirm the
mitigation of resultant
heap corruption.

CVE-2021-21309 2021-02-23 High Redis is an open-source,
in-memory database that
persists on disk. In affected
versions of Redis an integer
overflow bug in 32-bit Redis
version 4.0 or newer could be
exploited to corrupt the heap
and potentially result with
remote code execution. Redis
4.0 or newer uses a
configurable limit for the
maximum supported bulk input
size. By default, it is 512MB
which is a safe value for all
platforms. If the limit is
significantly increased,
receiving a large request from
a client may trigger several
integer overflow scenarios,

Remote code
execution

CWE-190
(Integer Overflow
or Wraparound)

Mitigated

The operation
hdrlen + newlen
+ 1 can result in an
integer overleaf of the
size_t type. This, for
example in the
function
sdsMakeRoomFor
results in the incorrect
reallocation of the
memory buffer.
Concatenation into
the new buffer using
sdscatlen
produces a buffer
overwrite coerced into
a deterministic crash
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which would result with buffer
overflow and heap corruption.
We believe this could in certain
conditions be exploited for
remote code execution. By
default, authenticated Redis
users have access to all
configuration parameters and
can therefore use the
“CONFIG SET
proto-max-bulk-len” to change
the safe default, making the
system vulnerable. **This
problem only affects 32-bit
Redis (on a 32-bit system, or
as a 32-bit executable running
on a 64-bit system).** The
problem is fixed in version 6.2,
and the fix is back ported to
6.0.11 and 5.0.11. Make sure
you use one of these versions
if you are running 32-bit Redis.
An additional workaround to
mitigate the problem without
patching the redis-server
executable is to prevent clients
from directly executing
`CONFIG SET`: Using Redis
6.0 or newer, ACL
configuration can be used to
block the command. Using
older versions, the
`rename-command`
configuration directive can be

by CHERI protections.
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used to rename the command
to a random string unknown to
users, rendering it
inaccessible. Please note that
this workaround may have an
additional impact on users or
operational systems that
expect `CONFIG SET` to
behave in certain ways

Postgres
Version: 9.6
Primary source of security advisories: https://www.postgresql.org/support/security/9.6/

CVE Date Severity Description Threat model CWE Assessment

CVE-2021-3202
8

2021-05-04 Medium A flaw was found in postgresql.
Using an INSERT ... ON
CONFLICT ... DO UPDATE
command on a
purpose-crafted table, an
authenticated database user
could read arbitrary bytes of
server memory. The highest
threat from this vulnerability is
to data confidentiality.

Private data
disclosure

CWE 200
(Exposure of
Sensitive
Information to
an Unauthorized
Actor)

Mitigated

Reading of arbitrary
server memory should
be mitigated but more
detailed investigation is
required to assess any
residual risk.

CVE-2021-3202
7

2021-05-13 High A flaw was found in postgresql
in versions before 13.3, before
12.7, before 11.12, before
10.17 and before 9.6.22. While
modifying certain SQL array

Private data
disclosure

Denial of
service

CWE-190
(Integer
Overflow or
Wraparound)

Mitigated

Integer overflow allows
out-of-bounds memory
write. Writing of
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values, missing bounds checks
let authenticated database
users write arbitrary bytes to a
wide area of server memory.
The highest threat from this
vulnerability is to data
confidentiality and integrity as
well as system availability.

CWE-119
(Improper
Restriction of
Operations
within the
Bounds of a
Memory Buffer)

arbitrary server
memory should be
mitigated but more
detailed investigation is
required to assess any
residual risk.

CVE-2020-2569
6

2020-11-12 High A flaw was found in the psql
interactive terminal of
PostgreSQL in versions before
13.1, before 12.5, before
11.10, before 10.15, before
9.6.20 and before 9.5.24. If an
interactive psql session uses
\gset when querying a
compromised server, the
attacker can execute arbitrary
code as the operating system
account running psql. The
highest threat from this
vulnerability is to data
confidentiality and integrity as
well as system availability

Remote code
execution

CWE-697
(Incorrect
Comparison)

CWE-270
(Privilege
Context
Switching Error)

CWE-183
(Permissive List
of Allowed
Inputs)

Unmitigated

CVE-2020-2569
5

2020-11-04 High A flaw was found in
PostgreSQL versions before
13.1, before 12.5, before
11.10, before 10.15, before
9.6.20 and before 9.5.24. An
attacker having permission to
create non-temporary objects
in at least one schema can

Remote code
execution

CWE-89
(Improper
Neutralization of
Special
Elements used
in an SQL
Command ('SQL
Injection'))

Unmitigated
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execute arbitrary SQL
functions under the identity of
a superuser. The highest threat
from this vulnerability is to data
confidentiality and integrity as
well as system availability.

CVE-2020-1720 2020-02-13 Medium A flaw was found in
PostgreSQL's "ALTER ...
DEPENDS ON EXTENSION",
where sub-commands did not
perform authorization checks.
An authenticated attacker
could use this flaw in certain
configurations to perform drop
objects such as function,
triggers, et al., leading to
database corruption. This
issue affects PostgreSQL
versions before 12.2, before
11.7, before 10.12 and before
9.6.17.

Private data
disclosure

CWE-862
(Missing
Authorization)

CWE-285
(Improper
Authorization)

Unmitigated

CVE-2019-1020
8

2019-08-08 High A flaw was discovered in
postgresql versions 9.4.x
before 9.4.24, 9.5.x before
9.5.19, 9.6.x before 9.6.15,
10.x before 10.10 and 11.x
before 11.5 where arbitrary
SQL statements can be
executed given a suitable
SECURITY DEFINER function.
An attacker, with EXECUTE
permission on the function, can

Remote code
execution

CWE-89
(Improper
Neutralization of
Special
Elements used
in an SQL
Command ('SQL
Injection'))

Unmitigated
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execute arbitrary SQL as the
owner of the function.

CVE-2019-1013
0

2019-09-05 Medium A vulnerability was found in
PostgreSQL versions 11.x up
to excluding 11.3, 10.x up to
excluding 10.8, 9.6.x up to,
excluding 9.6.13, 9.5.x up to,
excluding 9.5.17. PostgreSQL
maintains column statistics for
tables. Certain statistics, such
as histograms and lists of most
common values, contain
values taken from the column.
PostgreSQL does not evaluate
row security policies before
consulting those statistics
during query planning; an
attacker can exploit this to read
the most common values of
certain columns. Affected
columns are those for which
the attacker has SELECT
privilege and for which, in an
ordinary query, row-level
security prunes the set of rows
visible to the attacker.

Private data
disclosure

CWE-284
(Improper
Access Control)

Unmitigated

CVE-2018-1092
5

2018-08-09 High It was discovered that
PostgreSQL versions before
10.5, 9.6.10, 9.5.14, 9.4.19,
and 9.3.24 failed to properly
check authorization on certain
statements involved with

Private data
disclosure

CWE-863
(Incorrect
Authorization)

Unmitigated
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"INSERT ... ON CONFLICT
DO UPDATE". An attacker with
"CREATE TABLE" privileges
could exploit this to read
arbitrary bytes server memory.
If the attacker also had certain
"INSERT" and limited
"UPDATE" privileges to a
particular table, they could
exploit this to update other
columns in the same table.

CVE-2018-1091
5

2018-08-09 High A vulnerability was found in
libpq, the default PostgreSQL
client library where libpq failed
to properly reset its internal
state between connections. If
an affected version of libpq
was used with "host" or
"hostaddr" connection
parameters from untrusted
input, attackers could bypass
client-side connection security
features, obtain access to
higher privileged connections
or potentially cause other
impact through SQL injection,
by causing the PQescape()
functions to malfunction.
Postgresql versions before
10.5, 9.6.10, 9.5.14, 9.4.19,
and 9.3.24 are affected

Private data
disclosure

CWE-89
(Improper
Neutralization of
Special
Elements used
in an SQL
Command ('SQL
Injection'))

CWE-200
(Exposure of
Sensitive
Information to
an Unauthorized
Actor)

CWE-665
(Improper
Initialization)

Unmitigated

CVE-2018-1115 2018-05-07 Critical Postgresql before versions Private data CWE-732 Unmitigated
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10.4, 9.6.9 is vulnerable in the
adminpack extension, the
pg_catalog.pg_logfile_rotate()
function doesn't follow the
same ACLs than
pg_rorate_logfile. If the
adminpack is added to a
database, an attacker able to
connect to it could exploit this
to force log rotation.

disclosure (Incorrect
Permission
Assignment for
Critical
Resource)

CVE-2018-1058 2018-03-01 High A flaw was found in the way
Postgresql allowed a user to
modify the behavior of a query
for other users. An attacker
with a user account could use
this flaw to execute code with
the permissions of superuser
in the database. Versions 9.3
through 10 are affected.

Private data
disclosure

CWE-20
(Improper Input
Validation)

Unmitigated

CVE-2017-1509
9

2017-11-09 Medium INSERT ... ON CONFLICT DO
UPDATE commands in
PostgreSQL 10.x before 10.1,
9.6.x before 9.6.6, and 9.5.x
before 9.5.10 disclose table
contents that the invoker lacks
privilege to read. These
exploits affect only tables
where the attacker lacks full
read access but has both
INSERT and UPDATE
privileges. Exploits bypass row
level security policies and lack

Private data
disclosure

CWE 200
(Exposure of
Sensitive
Information to
an Unauthorized
Actor)

Unmitigated
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of SELECT privilege.

CVE-2017-15098 2017-11-09 High Invalid
json_populate_recordset or
jsonb_populate_recordset
function calls in PostgreSQL
10.x before 10.1, 9.6.x before
9.6.6, 9.5.x before 9.5.10, 9.4.x
before 9.4.15, and 9.3.x before
9.3.20 can crash the server or
disclose a few bytes of server
memory.

Denial of
service

Private data
disclosure

CWE 200
(Exposure of
Sensitive
Information to
an Unauthorized
Actor)

Partially Mitigated

Disclosure of sever
memory likely
mitigated (coerced to a
deterministic crash) but
further investigation
required to assess any
residual risk.

CVE-2017-7547 2017-08-10 High PostgreSQL versions before
9.2.22, 9.3.18, 9.4.13, 9.5.8
and 9.6.4 are vulnerable to
authorization flaw allowing
remote authenticated attackers
to retrieve passwords from the
user mappings defined by the
foreign server owners without
actually having the privileges
to do so.

Private data
disclosure

CWE-522
(Insufficiently
Protected
Credentials)

Unmitigated

CVE-2017-7546 2017-08-10 Critical PostgreSQL versions before
9.2.22, 9.3.18, 9.4.13, 9.5.8
and 9.6.4 are vulnerable to
incorrect authentication flaw
allowing remote attackers to
gain access to database
accounts with an empty
password.

Private data
disclosure

CWE-287(Impro
per
Authentication)

Unmitigated

CVE-2017-7486 2017-05-11 High PostgreSQL versions 8.4 - 9.6
are vulnerable to information

Private data
disclosure

CWE 200
(Exposure of

Unmitigated
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leak in pg_user_mappings
view which discloses foreign
server passwords to any user
having USAGE privilege on the
associated foreign server.

Sensitive
Information to
an Unauthorized
Actor)

CWE-522
(Insufficiently
Protected
Credentials)

CVE-2017-7484 2017-05-11 High It was found that some
selectivity estimation functions
in PostgreSQL before 9.2.21,
9.3.x before 9.3.17, 9.4.x
before 9.4.12, 9.5.x before
9.5.7, and 9.6.x before 9.6.3
did not check user privileges
before providing information
from pg_statistic, possibly
leaking information. An
unprivileged attacker could use
this flaw to steal some
information from tables they
are otherwise not allowed to
access.

Private data
disclosure

CWE 200
(Exposure of
Sensitive
Information to
an Unauthorized
Actor)

CWE-285
(Improper
Authorization)

Unmitigated
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